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Abstract
Online measuring of component concentrations in sodium aluminate liquor is essential and important to Bayer alumina

production process. They are the basis of closed-loop control and optimization and affect the final product quality. There

are three main components in sodium aluminate liquor, termed caustic hydroxide, alumina and sodium carbonate (their

concentrations are represented by cK, cA and cC, respectively). They are obtained off-line by titration analysis and suffered

from larger time delays. To solve this problem, a hybrid model for cK and cA is proposed by combining a mechanism model

and a stochastic configuration network (SCN) compensation model. An SCN-based model for cC is also proposed using the

estimated values of cK and cA from the hybrid model. A real-world application conducted in Henan Branch of China

Aluminum Co. Ltd demonstrates the effectiveness of the proposed modelling techniques. Experimental results show that

our proposed method performs favourably in terms of the prediction accuracy, compared against the regress model, BP

neural networks, RBF neural networks and random vector functional link model.

Keywords Stochastic configuration networks � Industrial data modelling � Component concentrations � Sodium aluminate

liquor

1 Introduction

Sodium aluminate liquor is an intermediate product

throughout the whole process of Bayer alumina production.

The main component concentrations of sodium aluminate

liquor cK, cA and cC are the foundation for indicator control

in the procedure of original ore pulp preparation, digestion,

decomposition and evaporation. Due to the nonlinearity

characteristics of sodium aluminate liquor, such as easy

precipitation, large viscosity, high concentration and strong

corrosiveness, online measuring of component concentra-

tions is quite difficult and usually they are obtained through

artificial sampling and laboratory titration analysis, which

is not only complicated and costly, but also suffers from

larger time delays as well. Therefore, online estimate of

component concentrations in sodium aluminate liquor is

significant to implement process optimization and control

of the alumina industry.

The existing methods of estimating cK, cA and cC can be

classified into two categories. One is based on the principle

of reagent titration [15, 16], including photometric titra-

tion, potentiometric titration, thermometric titration, micro-

titration, reagent automatic titration analysis, flow injection

analysis and so on. However, most of them belong to off-

line measurement, and the instrument pipeline is relatively

thin and easy to scar and block up, resulting in degraded

estimate accuracy. The automatic titration developed by

American Matocha is highly automated with good preci-

sion for the chemical reaction process. But, such an

instrument system has some limitations such as complex

structure, low reliability, strict environmental requirements

and high maintenance cost, which stop making a wide use

in domestic alumina industry. Another category mainly

includes the temperature–conductivity method and the
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conductivity–density–ultrasonic method [2]. Among the

methods of separating the reagents, the temperature–con-

ductivity measurement is relatively simple with low cost,

which is the first choice for online measurement of sodium

aluminate liquor component concentrations in the alumina

industry of China. In the literature, the design of sensor

model of cK, cA and cC using temperature and conductivity

is mainly based on the orthogonal test and the least squares

regression techniques [3]. From data modelling perspec-

tives [7, 8], these methods do not take advantages of

making full use of mechanistic knowledge and applying the

data-driven error compensation model or model correction

mechanism for domain problem-solving.

To address the problems mentioned above, we proposed

a method of combining a mechanism model with an error

compensation model based on neural networks for cK and

cA in [22]. However, the learning process is time-con-

suming and easy to fall into a local minimum. Besides, it is

quite challenging to properly set the initial weights and

biases and determine the number of hidden nodes which

are closely associated with both the learning and general-

ization performance. To resolve these problems, random-

ized methods for neural networks can be applied for

developing fast learner models [14]. Randomized learning

algorithms have much less computational cost through

random assignment on the input weights and biases and

evaluate the output weights by least squares methods.

Compared to randomized RBF networks [1] and RVFL

networks [6, 11], stochastic configuration networks (SCNs)

share merit to ensure the universal approximation property

of built randomized learner models. The essential and

innovative contribution of the SCN framework is the way

of assigning the random parameters with an inequality

constraint and adaptively selecting the scope of the random

parameters [18]. So an SCN-based learner model is

employed in this paper to compensate the unknown parts

which are not included in the mechanism model of cK and

cA. Another component concentration cC is related to cK
and cA, but it is difficult to establish a mechanism model.

We propose a data-driven method to estimate the cC using

another SCN model with the cK and cA as part of the

inputs.

The remainder of this paper is organized as follows:

Sect. 2 describes the production process of Bayer alumina

and formulates some relevant problems in the component

concentration measurement. Section 3 introduces the SCN

framework to support the following hybrid modelling.

Section 4 details the mechanism model and the learning-

based error compensation model for cK and cA, and data-

driven model based on SCN for cC. Section 5 reports our

experimental results in Henan Branch of China Aluminum

Co. Ltd, and Sect. 6 concludes this paper.

2 Problem description of component
concentration measurement in sodium
aluminate liquor

2.1 Introduction of Bayer alumina production

Bayer alumina production is one of the most popular

methods in alkaline alumina process, and the principle of

Bayer alumina production is shown in Fig. 1: The bauxite,

lime and recycled liquor are mixed by a certain proportion

and grinded into original ore pulp. Under the conditions of

high temperature and high pressure, the caustic solution is

used to dissolve the alumina in the bauxite to produce

sodium aluminate liquor. The prepared sodium aluminate

liquor is further added with aluminium hydroxide as a seed

to be decomposed under cooling and stirring conditions to

obtain aluminium hydroxide, and the aluminium hydroxide

is roasted to obtain alumina. The remaining mother liquor

is evaporated and then used to dissolve a new batch of

bauxite. The impurities, such as silica, become into red

mud and will be discharged after washing or used in the

sintering process.

Throughout the Bayer alumina production process,

sodium aluminate liquor exists almost throughout the cir-

culation. Many procedures require real-time detection of

sodium aluminate liquor component concentrations. For

example, they play an important role in the original ore

pulp preparation procedure for the control of liquid–solid

ratio, in the high-pressure digestion procedure for the

control of dissolution rate, in the seed decomposition

Fig. 1 Flowchart of Bayer alumina production

Neural Computing and Applications

123



procedure for the control of decomposition rate, in the

evaporation procedure for the control of alumina/caustic

ratio and so on. They are also crucial for inhibiting red mud

expansion, and improving the sedimentation performance

of red mud. Thus, real-time detection of the component

concentrations in sodium aluminate liquor for each proce-

dure has great significance for integrated automation. It

will reduce the workers intensity and save the laboratory

cost, and realize a stable and high-quality production in

Bayer alumina. As a preliminary study, the first important

step in the whole process which called original ore pulp

preparation is chosen for our experiment.

2.2 Component concentration measurement
in original ore pulp preparation

The original ore pulp preparation process uses a certain

proportion of bauxite, lime and sodium aluminate liquor to

prepare the original ore pulp with the chemical composi-

tion and physical properties meeting the requirements of

the high-pressure digestion process. First, bauxite is cru-

shed to meet the requirements of the particle size, and the

crushed aluminium ore and lime are fed from a feed belt to

a silo, which is then fed into a lattice mill using a plate

feeder, and the amount of aluminium ore and lime fed is

adjusted by controlling the speed of the plate feeder. On the

other hand, the sodium aluminate liquor (including NaOH

solution and the circulating mother liquor returned by the

process of evaporation or seed decomposition, etc.) enters

the mother liquor tank and is sent to the lattice mill and the

classifier by the pump which is controlled by the frequency

converter to adjust the flow rate of the circulating mother

liquor. After the aluminium ore, lime and circulating

mother liquor enter the lattice mill, they are mixed and

finely ground to form a mixed pulp with certain fineness,

proportion and uniformity. The ground original ore pulp is

sent to a classifier at the same time as a certain amount of

circulating mother liquor, and the mixed particles of dif-

ferent sizes, different shapes and different specific gravities

are classified. After the classification process, the granules

that meet the requirements are sent to the buffer tank for

the high-pressure digestion process, and the undesired

coarse particles are sent back to the lattice mill for re-

grinding.

The liquid–solid ratio is an important indicator of this

process. If the component concentration measurement is

delayed, the flow of the liquor added to the lattice mill will

be not accurate, and it will be difficult to prepare a qualified

original ore pulp. In addition, the source of the sodium

aluminate liquor in this process is scattered and uncertain,

and the concentration difference between them is large. It

is difficult to measure the component concentration using

commonly used variables such as pressure, flow, etc.

Therefore, it is a right choice to use soft measurement

methods to solve this problem according to its physical and

chemical properties.

2.3 Modelling principle for component
concentrations in sodium aluminate liquor

According to the factors that affect the electrolyte con-

ductivity and the composition of sodium aluminate liquor,

the conductivity, temperature and caustic hydroxide con-

centration cK, alumina concentration cA and sodium car-

bonate concentration cC have the following relationship

[3]:

d ¼ f ðT; cK; cA; cCÞ; ð1Þ

where f(.) is a nonlinear function, d is the conductivity of

sodium aluminate liquor, T is the temperature. From this

relationship, it can be concluded that if we observe the

changes of temperature and conductivity, we will receive

the changes of component concentrations in sodium alu-

minate liquor.

It is also known that the relationship between tempera-

ture and conductivity is an approximate linear relationship

[3], as shown in Fig. 2.

It can be seen that the conductivity of sodium aluminate

liquor increases with the temperature rising, and these lines

are corresponding to different component concentrations of

cK, cA and cC. The slope and intercept of the approximate

straight line vary with different component concentrations.

Combination with (1), we can know that a certain pro-

portion of sodium aluminate liquor (viz. cK, cA, cC are

fixed), its temperature and conductivity have such

relationship:

Fig. 2 Relationship between T and d
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d ¼ kðcK; cA; cCÞT þ bðcK; cA; cCÞ; ð2Þ

where k is the slope, b is the intercept of the straight line

and they are nonlinear function of cK, cA, cC. It is known

that cC can be negligible when its value is below 40 g/l, and

in industry field cC is around 30 g/l. Thus, Eq. (2) can be

rewritten as

d ¼ kðcK; cAÞT þ bðcK; cAÞ: ð3Þ

Besides, there is also a linear relation between d and cA
(when T, cK, cC are fixed), as shown in Fig. 3. It can be

seen that the conductivity decreases as the alumina con-

centration increases, and the higher the temperature, the

faster the decrease. It is a linear function between the two

variables.

Using least squares regression, we have the following

equations

k ¼
 

ok

ocA

!
ck

cA þ k0; ð4Þ

b ¼
 

ob

ocA

!
ck

cA þ b0: ð5Þ

It has been proved that a quadratic least squares regression

gives the best fit when regression these coefficients against

cK [3].

k ¼ ðK1c
2
K þ K2cK þ K3ÞcA þ ðK4c

2
K þ K5cK þ K6Þ; ð6Þ

b ¼ ðB1c
2
K þ B2cK þ B3ÞcA þ ðB4c

2
K þ B5cK þ B6Þ; ð7Þ

where K1–K6 and B1–B6 are unknown coefficients.

It can be seen from the derivation of the above equa-

tions, the input–output relationship of our model can be

established as follows:

ŷK ¼ f1½kðT; dÞ; bðT; dÞ�;

ŷA ¼ f2½kðT; dÞ; bðT; dÞ; ŷK�;

ŷc ¼ f3 ½kðT; dÞ; bðT; dÞ; ŷK; ŷA�;

8>><
>>: ð8Þ

where ŷK, ŷA, ŷC is the model output of component con-

centrations, T ¼ ½T1; T2; T3� and d ¼ ½d1; d2; d3� are differ-

ent temperatures ( heating, cooling and mixing) and the

corresponding conductivities of sodium aluminate liquor.

Based on this principle, a hybrid online modelling

strategy is proposed, as shown in Fig. 4. First, a device is

needed for measuring the temperatures and conductivities

of sodium aluminate liquor. After data sampling and pre-

processing, a mechanism model for cK and cA is proposed,

and the modelling error is compensated by an SCN model.

yK and yA is the artificial laboratory value of cK and cA, yKm
and yAm is the output of mechanism model of cK and cA, eK
and eA is the error between them. êK and êA is the output of

SCN-based compensation model. The proposed data-driven

modelling method for cC is also based on SCN.

3 Introduction of SCN for industrial data
modelling

This section provides a fast and effective machine learning

methodology to support the proposed hybrid modelling

method for problem-solving.

Hybrid modelling methods address a fusion technology

of mechanism analysis and data-driven modelling tech-

niques which is effective and widely used in many appli-

cations of industrial processes [4, 10, 12, 13, 17]. Due to

the approximate linear relationship between the input

variables and the output variables described in (2) and (3),

modelling error occurs and some compensation strategies

should be in place for improved modelling performance. In

industrial hybrid modelling, there is mostly a combination

of simple mechanism model and neural networks model.

Unfortunately, the BP compensation model in [22] suffers

from the sensitive setting of the hidden nodes number and

learning rate, local minima and very slow convergence. To

overcome this problem, random vector functional link

networks (RVFL) are widely used and they perform rea-

sonably good in terms of the learning performance and the

predictability, compared to neural networks with opti-

mization-based learning algorithms. Unfortunately, RVFL

networks lack practical learning schemes that ensure the

learning capability for a given dataset. The key issue pre-

sented in RVFL networks is the scope setting of the ran-

dom weights and biases that may result in a failure of

function approximation or data modelling [9]. Thanks to an

advancement of randomized learning techniques, stochastic

configuration networks (SCNs) were proposed in [18],Fig. 3 Relationship between cA and d
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where a supervisory mechanism is firstly presented to

guarantee the universal approximation property (i.e.,

learning capability). The following subsection briefly

describes the SCN concept for fast industrial data

modelling.

SCNs are a class of feedforward neural networks built

by randomized algorithm [18]. The core contribution of the

SCN framework lies in a supervisory mechanism for the

random parameter assignment, and the learner model is

incrementally built. This constructive approach for build-

ing SCNs guarantees the universal approximation property.

For details of the SCN theory and learning algorithms,

readers can refer to [18]. We outline the stochastic con-

figuration algorithm as follows for our purpose in this

study.

Given a training data set with N sample pairs

fðXp;YpÞ; p ¼ 1; 2; . . .;Ng, where Xp ¼ ½x1; x2; . . .; xm�T 2
Rm and Yp ¼ ½y1; y2; . . .; yn�T 2 Rn. Let X 2 RN�m and Y 2
RN�n represent the input and output data matrix, respec-

tively; eL�1ðXÞ 2 RN�n be the residual error matrix for the

SCN model with L� 1 terms, where each column eL�1;q

ðXÞ ¼ ½eL�1;qðX1Þ; . . .; eL1;qðXNÞ�T 2 RN ; q ¼ 1; 2; . . .; n.

Denote the output vector of the L-th hidden node /L for the

input X by

hLðXÞ ¼ ½/LðwT
LX1 þ bLÞ; . . .;/LðwT

LXN þ bLÞ�T: ð9Þ

Thus, the hidden layer output matrix of the SCN model can

be expressed as HL ¼ ½h1; h2; . . .; hL�. Let

nL;q ¼

�
eTL�1;qðXÞ � hLðXÞ

�2

hTLðXÞ � hLðXÞ
� ð1� rLÞeL�1;qðXÞ;

q ¼ 1; 2; . . .; n:

ð10Þ

With these notations, the SC Algorithm proposed in [18]

can be summarized as follows:

Step 1. Set up learning parameters, including a set of

scope [�ki, ki], i ¼ 1; 2; . . .; s, where

0\k1\k2\ � � �\ks, and an increasing sequence r

1\r2\ � � �\r t\1; also, set up two termination condi-

tions, that is, either the maximum number of the hidden

nodes Lmax or the error tolerance s.
Step 2. Take random parameters wL and bL from

adjustable interval [�k, k] for Nc (a user specified integer)

times, and check out the following inequalities with ri,

i ¼ 1; 2; . . .; t (starting from r1)

nL;q � 0; q ¼ 1; 2; . . .; n: ð11Þ

If (11) holds, define the set of random parameters wL and

bL such that nL ¼
Pn

q¼1 nL;q takes the maximum.

Step 3. Evaluate the output weight matrix b by solving

the following least means square problem:

Fig. 4 Structure of the modelling strategy
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b� ¼ argmin
b

kHLb� Yk2F ¼ Hþ
L Y; ð12Þ

where Hþ
L is the Moore–Penrose generalized inverse of the

matrix HL, and k:kF represents the Frobenius norm.

To speed up the procedure of building SCN models, we

could add the top nB (an end-user specified integer) ranked

(according to the values of nL) candidate nodes as a batch

in each incremental loop of the SC algorithm. Some

detailed discussions can be found in [5].

4 Hybrid modelling method for component
concentrations

4.1 Hybrid modelling for cK and cA

Simplify (6) and (7), yKm can be evaluated by the following

equation:

y4Km þ m1y
3
Km þ ðm2k þ m3bþ m4Þy2Km

þ ðm5k þ m6bþ m7ÞyKm
þ ðm8k þ m9bþ m10Þ ¼ 0;

ð13Þ

and yAm can be evaluated by

yAm ¼ ðk � bÞ � ðn4y2Km þ n5yKm þ n6Þ
n1y

2
Km þ n2yKm þ n3

; ð14Þ

where m1 � m10, n1 � n6 are the coefficients to be deter-

mined. The concrete steps for mechanism model of cK and

cA are as follows:

Step 1: variable conversion

As described in Fig. 2, we use the approximate linear

relationship between temperature and conductivity and con-

vert the variables T and d into k and b for the next step, that is,

d1 ¼ kT1 þ b;

d2 ¼ kT2 þ b;

d3 ¼ kT3 þ b:

8>><
>>:
Then, by using the least squares method, we can easily get

k

b

� �
¼
 

1 1 1

T1 T2 T3

� � 1 T1

1 T2

1 T3

2
64

3
75
!�1

1 1 1

T1 T2 T3

� � d1

d2

d3

2
64

3
75:

Step 2: orthogonal experimental design for model param-

eters determination

The raw materials used in the orthogonal experiment are

composed of evaporated liquor, pure sodium hydroxide and

pure sodium carbonate. The composition and concentration

of the evaporated liquor are shown in Table 1. The varia-

tion range of the orthogonal experimental factors is shown

in Table 2. The factor and level coding is shown in

Table 3.

According to the orthogonal table of four factors by

quadratic regression, 15 kinds of solution need to be con-

figured. The temperature and conductivity of these solu-

tions for each group are measured by continuous heating,

and the experimental equipment and measuring process are

shown in Fig. 5.

The data of this orthogonal experiment are collected,

and the parameters of the mechanism model are determined

by these data. The algorithm is as follows:

(a) Using the orthogonal experimental data cK, k and b,

the undetermined coefficient m1–m10 in (13) is

estimated by least square regression.

(b) Substitute orthogonal experimental data k and b,

solvie the equation with four order about cK, and get

the calculated value yKm of the mechanism model.

(c) Using the orthogonal experimental data k, b and the

calculated value of yKm, the undetermined coeffi-

cients n1–n6 in (14) are regressed to obtain cA.

(d) By using the established approximate mechanism

model with known coefficients, both the calculated

values yKm and yAm can be obtained by new field

data.

The inputs of compensation model based on SCNs are

heating temperature T1 and conductivity d1, cooling tem-

perature T2 and conductivity d2, mixing temperature T3 and

conductivity d3, mechanism model outputs yKm and yAm,

and the neural network outputs are the errors eK and eA
between the mechanism calculation values yKm, yAm and

real laboratory analysis values yK and yA. The structure of

this network is shown in Fig. 6.

The predicted results êK and êA of neural network are

used to compensate the error of mechanism model. The

output of this hybrid model can be described as follows:

ŷK ¼ yKm þ êK; ð15Þ

and

Table 1 Composition and concentration of evaporated liquor

Composition NaOH Al(OH)3 Na2CO3

Concentration (g/l) 272.7 137.7 26.55

Table 2 Variation range of orthogonal experimental factors

Factors cK (g/l) cA (g/l) cC (g/l) T (�C)

Upper bound 230 120 36 96

Lower bound 190 80 24 70
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ŷA ¼ yAm þ êA; ð16Þ

where ŷK and ŷA are the final model output of cK and cA.

4.2 SCN-based data-driven model for cC

The proposed SCN-based data-driven model structure for

cC is shown in Fig. 7.

The input variables are T1, T2, T3, d1, d2, d3 and ŷK; ŷA.

The neural network output is artificial laboratory value yC.

The SC algorithm for cC model is almost the same as the

compensation model introduced above. The difference is

the training data set with N sample pairs fðxCn; yCnÞ; n ¼
1; 2; . . .;Ng where xCn 2 R8; yCn 2 R1, and the input and

output data matrix is XC 2 RN�8; YC 2 RN�1, respectively.

Table 3 Factor and level coding

of orthogonal experiment

(r ¼ 1:414)

Variables n1 (caustic hydroxide) n2 (alumina) n3 (sodium carbonate) n4 (temperature)

Factor cK (g/l) cA (g/l) cC (g/l) T ð�C)
Benchmark level 210 (Z1) 100 (Z2) 30 (Z3) 83 (Z4)

Change distance 14.14 (D1) 14.14 (D2) 4.24 (D3) 9.19 (D4)

Upper level (þ1) 224.14 114.14 34.24 92.19

Lower level (�1) 195.86 85.86 25.76 73.81

Upper asterisk arm 230 120 36 96

Lower asterisk arm 190 80 24 70

Fig. 5 Process of orthogonal experiment

Fig. 6 Structure of error compensation model based on SCNs

Fig. 7 Structure of data-driven model for cC

Fig. 8 Hardware of measurement device
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Table 4 Partial of the original

data
Variables 1 record 2 records 3 records ... 523 records 524 records

T1 (�C) 86.18 90.21 88.71 ... 92.86 92.94

D1 (ms/cm) 577.73 593.59 578.44 ... 661.09 660.70

T2 (�C) 72.29 72.92 66.82 ... 75.28 74.25

D2 (ms/cm) 455.95 456.09 400.86 ... 493.91 486.33

T3 (�C) 77.71 80.87 79.82 ... 78.95 78.95

D3 (ms/cm) 482.11 507.34 489.77 ... 526.02 521.41

cK (g/l) 213.00 216.00 215.00 ... 218.00 218.00

cA (g/l) 106.24 106.24 106.23 ... 103.94 104.27

cC (g/l) 30.60 30.60 29.60 ... 29.00 29.80

Fig. 9 Results of mechanism

model for cK and cA

Fig. 10 Autocorrelation function of mechanism modelling error for

cK

Fig. 11 Autocorrelation function of mechanism modelling error for

cA

Neural Computing and Applications

123



5 Experiments

5.1 System setup

A measurement device is designed to implement the pro-

posed modelling algorithm. As shown in Fig. 8, the hard-

ware system can be divided into three main parts: sampling

equipment, instrument control system, IPC (Industrial

Personal Computer) and peripheral equipment. The sam-

pling device is used to obtain sodium aluminate solution

and collect temperature and conductivity data online. The

device consists of pipes, solution tanks, heater, coolers,

solenoid valves, manual valves, etc. They are made of

stainless steel and are equipped with three temperature and

conductivity probes in the solution tanks. PLC controller is

used for switch control of heater, cooler, solenoid valves

and other equipment. IPC and peripherals are used for

parameter monitoring, model calculation and report

printing.

The working principle of this device is as follows: The

pipe inlet introduces the sodium aluminate liquor sample

into the system through the main valve and adjusts the

optimum flow rate by control the valve opening. After the

liquor is heated by the heater, a portion of the liquor enters

the first tank through the heating pipe, and a portion of the

liquor is cooled by the cooler and passed through the

cooling pipe to the second tank. The two liquors are mixed

in the mixing tank and flowed into the third tank. Heating

temperature and conductivity, cooling temperature and

conductivity, mixing temperature and conductivity were

measured during this process. The liquor passes through

three pipes and is eventually returned from the device

outlet to the on-site solution pipe.

In order to ensure the quality of modelling data, the

required heating temperature range is about 85–95 �C, the
cooling temperature range is about 65–75 �C, and the

mixing temperature range is about 75–85 �C.

5.2 Data sampling and parameter selection
in mechanism models

The data sampling period is set as 5 s in the measurement

device; after the median filtering, it is about 65 s to store a

set of data. Manual sampling interval during our

Fig. 12 RMSE of training process for SCN

Fig. 13 Training results of cK
and cA after SCN-based

compensation
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experiment is 30 min daytime (sampling interval in

industrial locale is 2 h). We collected 524 records from the

industrial locale in about 2 months. Half samples are used

for model training, and the other half samples for test.

Partial of the original data are shown in Table 4.

Based on the orthogonal experimental data, the mecha-

nism model parameters in (13) are regressed, and using the

calculated value of yKm, the parameters in (14) are

regressed. Then, the calculated values yAm can be obtained.

The calculated values yKm and yAm will be used for the

compensation model.

5.3 Results and discussion for cK and cA

The results of mechanism model for cK and cA are shown

in Fig. 9, and the autocorrelation function of mechanism

modelling error for cK and cA is shown in Figs. 10 and 11.

From Fig. 9, we can see the trend of mechanism model

estimation value is almost the same as the real value,

indicating that the mechanism model is effective. From

Figs. 10 and 11, we can see that the error of mechanism

model should be improved and a compensation model is

needed.

Fig. 14 Test results of cK and

cA before and after SCN-based

compensation

Fig. 15 Autocorrelation function of estimation error for cK after SCN-

based compensation
Fig. 16 Autocorrelation function of estimation error for cA after SCN-

based compensation
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Using the proposed SCN-based compensation model

algorithm, the training RMSE is shown in Fig. 12 and the

model is built with 32 hidden nodes. The training and test

results of cK and cA after compensation are shown in

Figs. 13 and 14, and the autocorrelation function of esti-

mation error for cK and cA after compensation is shown in

Figs. 15 and 16. From these figures, we can see that good

performance has been achieved after compensation, and the

Table 5 Test results of mechanism and compensation model

Algorithm Mechanism model Mechanism and SCN-based

compensation model

RMSE of cK 6.99 1.81

RMSE of cA 3.62 1.51

Fig. 17 Test results of cK and

cA after NNPLS compensation

Fig. 18 Test results of cK and

cA after BP compensation
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Fig. 19 Test results of cK and

cA after RBF compensation

Fig. 20 Test results of cK and

cK after RVFL compensation

Table 6 Per cent variance

captured by NNPLS model
cK X-Block Y-Block cA X-Block Y-Block

LV # This LV Total This LV Total LV # This LV Total This LV Total

1 15.48 15.48 76.08 76.08 1 26.23 26.23 49.33 49.33

2 27.09 42.57 8.24 84.33 2 25.82 52.45 11.54 60.87

3 23.32 65.89 2.03 86.36 3 11.24 63.69 7.16 68.04

4 16.89 82.78 1.14 87.5 4 9.45 73.15 4.79 72.83

5 9.99 92.77 0.17 87.67 5 14.75 87.9 0.35 73.18
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estimation accuracy has been improved significantly. There

is RMSE (root mean square error) defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

ðŷðkÞ � yðkÞÞTðŷðkÞ � yðkÞÞ

vuut : ð17Þ

The result comparison is shown in Table 5.

Compare the proposed SCN-based method with other

methods for compensation, such as NNPLS, BP, RBF and

RVFL; the best estimation values of each algorithm are

shown in Figs. 17, 18, 19, and 20, respectively.

In the algorithm of NNPLS, 5 LVs has been chosen and

the per cent variance is shown in Table 6.

The specific results of each algorithm are shown in

Table 7.

From the comparison of the curves for different algo-

rithms, NNPLS method has poor accuracy for both training

and test. BP and RBF results are better than NNPLS, but

their running time is longer than other methods; it will be

even longer for big industrial data. The number of hidden

nodes for RBF is also larger. RVFL is faster than BP and

RBF, but its accuracy is lower than them. From compre-

hensive analysis, we can see that SCN has better accuracy

and fast learning speed; it also has better generalization

than the other algorithms.

5.4 Results and discussion for cC

Using the proposed SCN-based data-driven model, the

RMSE of training process for cC is shown in Figs. 20, and

21 hidden nodes are chosen. From the figure, we can see

the model estimation value almost can follow the real value

trend, indicating the SCN-based data-driven model is

effective. Different algorithms to predict cC are compared,

such as NNPLS, BP, RBF and RVFL, with the same hidden

nodes, and the results are shown in Table 8.

From the model test of cC, 4 LVs is chosen for NNPLS

and 20 hidden nodes are set by each neural network; we

can see the conclusion is almost the same as cK and cA
compensation model. The accuracy and running time of

SCN are both better than other neural networks. NNPLS

has shorter running time but lower accuracy. BP has lower

generalization and longer running time. RBF has sound

accuracy but longer running time. RVFL has shorter run-

ning time but lower accuracy.

In summary, the hybrid model which combined with

mechanism analysis and data-driven techniques makes full

use of the mechanism knowledge and is more effective

than the single data-driven model we proposed for the

alumina production process in [21]. Although the dynamic

mechanism model of the component concentration is not

Table 7 Comparison of

different compensation

algorithms for cK and cA

Algorithms Training Test Runing time Number of hidden nodes

RMSEcK RMSEcA RMSEcK RMSEcA

NNPLS 2.5337 1.8782 2.2003 1.965 0.95 –

BP 2.2442 1.553 2.083 1.6335 11.04 18

RBF 1.7795 1.3976 1.7897 1.6949 6.01 260

RVFL 2.092 1.6421 1.9251 1.7856 0.93 32

SCN 1.8056 1.5116 1.8063 1.5111 1.39 32

Fig. 21 RMSE of SCN training process for cC

Table 8 Comparison of

different algorithms for cC
Algorithms Training RMSEcC Test RMSEcC Runing time (s) Number of hidden nodes

NNPLS 1.1072 1.1075 0.47 –

BP 0.9863 1.1236 8.19 20

RBF 1.0156 1.0986 1.71 20

RVFL 1.025 1.1229 1.13 20

SCN 1.0068 1.0987 0.69 20
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obtained, the static mechanism approximation model can

still obtain better prediction results. However, single data-

driven model is straightforward and simple, and it is more

versatile than hybrid model for using in other similar

industrial processes. The accuracy of both methods can

meet the requirements of the alumina production process,

and the user can decide which method to choose according

to the actual object.

6 Concluding remarks

For Bayer alumina production process, better modelling

performance of component concentrations in sodium alu-

minate liquor is significant for process control and opti-

mization. A hybrid modelling strategy with mechanism

model and SCN-based data-driven model is proposed in

this paper. From the real-world application results, we can

see that mechanism model reflects the internal relation and

improved performance can be achieved by using the SCN-

based compensation model and data-driven model. SCN

model has the merits such as less human intervention on

the network size setting, the scope adaptation of random

parameters, fast learning and sound generalization. It fulfils

the industrial requirements and provides a new online

approach to measure the component concentrations.

Along with the topic addressed in this work, some fur-

ther studies are being expected. For instance, data should

be sampled continuously all day and the sampling interval

should be the same. Also, sample data from locale may be

contaminated with noises and outliers, robust stochastic

configuration networks and ensemble data modelling

techniques can be applied [19, 20]. Dynamic features and

time-related variations in the process should also be con-

sidered in modelling. Besides, due to the sensors collected

more input data, but the output laboratory data are less,

semi-supervised learning algorithm should be developed.
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