
Information Sciences 412–413 (2017) 210–222

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Robust stochastic configuration networks with kernel density

estimation for uncertain data regression

Dianhui Wang

∗, Ming Li

Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia

a r t i c l e i n f o

Article history:

Received 16 February 2017

Revised 29 May 2017

Accepted 30 May 2017

Available online 31 May 2017

Keywords:

Stochastic configuration networks

Robust data regression

Randomized algorithms

Kernel density estimation

Alternating optimization techniques

a b s t r a c t

Neural networks have been widely used as predictive models to fit data distribution, and

they could be implemented through learning a collection of samples. In many applica-

tions, however, the given dataset may contain noisy samples or outliers which may re-

sult in a poor learner model in terms of generalization. This paper contributes to a devel-

opment of robust stochastic configuration networks (RSCNs) for resolving uncertain data

regression problems. RSCNs are built on original stochastic configuration networks with

weighted least squares method for evaluating the output weights, and the input weights

and biases are incrementally and randomly generated by satisfying with a set of inequal-

ity constrains. The kernel density estimation (KDE) method is employed to set the penalty

weights for each training samples, so that some negative impacts, caused by noisy data

or outliers, on the resulting learner model can be reduced. The alternating optimization

technique is applied for updating a RSCN model with improved penalty weights computed

from the kernel density estimation function. Performance evaluation is carried out by a

function approximation, four benchmark datasets and a case study on engineering appli-

cation. Comparisons to other robust randomised neural modelling techniques, including

the probabilistic robust learning algorithm for neural networks with random weights and

improved RVFL networks, indicate that the proposed RSCNs with KDE perform favourably

and demonstrate good potential for real-world applications.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For many real-world applications, sample data collected from various sensors may be contaminated by some noises or

outliers [7] , which makes troubles for building neural networks with sound generalization. Over the past years, robust data

modelling techniques have received considerable attention in the field of applied statistics [7,8,11] and machine learning

[2,3,5,12,19] . It is well known that the cost function plays an important role in robust data modelling. In [2] , the M-estimator

and Hampels hyperbolic tangent estimates were employed in the cost function, aiming to alleviate the negative impacts of

outliers on the modelling performance. Under an assumption that the additive noise of the output follows Cauchy distri-

bution, the mean log squared error was used as a cost function in [12] . In [5] , a robust learning algorithm based on the

M-estimator cost function with random sample consensus was proposed to deal with outliers, and this algorithm has been

successfully applied in computer vision and image processing [15,20,22] . Besides these methods mentioned above, some

results on robust data regression using support vector machine (SVM) have been reported in [3,19] , where SVM-based ap-

proaches demonstrate some limits to handle uncertain data regression problems with higher level outliers.
∗ Corresponding author.

E-mail address: dh.wang@latrobe.edu.au (D. Wang).

http://dx.doi.org/10.1016/j.ins.2017.05.047

0020-0255/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2017.05.047
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2017.05.047&domain=pdf
mailto:dh.wang@latrobe.edu.au
http://dx.doi.org/10.1016/j.ins.2017.05.047

D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222 211

Back-propagation algorithms for training neural networks suffer from many shortcomings, such as learning parameter

setting, slow convergence and local minima. Thus, it is useful to develop advanced learning techniques for resolving data

regression problems, in particular, for stream data or online data modelling tasks. With such a background, randomized

methods for training neural networks have been developed in the last decades [9,14,16] . Readers may refer to a recently

published survey paper for more details about some milestones on this topic [18] . Studies on the robust data modelling

techniques based on Random Vector Functional-link (RVFL) networks have been reported in [1,4] . Specifically, a hybrid regu-

larization model with assumption on the sparsity of outliers was used in training process, and a probabilistic robust learning

algorithm for neural networks with random weights (PRNNRW) was proposed in [1] . However, some learning parameters

used in PRNNRW must be set properly and this is quite difficult to be done in practice. In [4] , an improved version of RVFL

networks built by using a KDE-based weighted cost function was suggested. Unfortunately, the significance of the scope

setting of the random weights and biases for RVFL networks has not been addressed. In [13] , we looked into some prac-

tical issues and common pitfalls of RVFL networks, and clearly revealed the impact of the scope setting on the modelling

performance of RVFL networks. Our findings reported in [13] motivates us to further investigate the robust data regression

problem using an advanced randomized learner model, termed as Stochastic Configuration Networks (SCNs), which are built

incrementally by assigning the random weights and biases with a supervisory mechanism [21] .

This paper aims to develop a robust version of SCNs for uncertain data regression. Based on the construction process of

SCNs, we utilise a weighted least squares objective function for evaluating the output weights of SCNs, and the resulting

approximation errors from the present SCN model are used to incrementally configure the hidden nodes with constrained

random parameters. During the course of building RSCNs, the penalty weights representing the degree of contribution of

individual data samples to the objective function are updated according to a newly constructed KDE function. In this work,

an alternating optimization (AO) technique is employed to implement the RSCN model. Our proposed algorithm, termed as

RSC-KDE, is evaluated by using a function approximation, four benchmark datasets with different levels of artificial outliers,

and an engineering application [4] . Experimental results indicate that the proposed RSC-KDE outperforms other existing

methods in terms of effectiveness and robustness.

The remainder of paper is organized as follows: Section 2 briefly reviews stochastic configuration networks and the

kernel density estimation method. Section 3 details our proposed RSC-KDE algorithm. Section 4 reports experimental results

with comparisons and discussion. Section 5 concludes this paper with some remarks.

2. Revisit of stochastic configuration networks

This section reviews our proposed SCN framework, in which the input weights and biases are randomly assigned in the

light of a supervisory mechanism, and the output weights are evaluated by solving a linear least squares problem. More

details about SCNs can be read in [21] .

Let � := { g 1 , g 2 , g 3 . . . } be a set of real-valued functions, span(�) denote a function space spanned by �; L 2 (D) denote the

space of all Lebesgue measurable functions f = [f 1 , f 2 , . . . , f m

] : R

d → R

m defined on D ⊂ R

d , with the L 2 norm defined as

‖ f‖ :=

(

m ∑

q =1

∫
D

| f q (x) | 2 dx

) 1 / 2

< ∞ . (1)

The inner product of φ = [φ1 , φ2 , . . . , φm

] : R

d → R

m and f is defined as

〈 f, φ〉 :=

m ∑

q =1

〈 f q , φq 〉 =

m ∑

q =1

∫
D

f q (x) φq (x) dx. (2)

In the special case that m = 1 , for a real-valued function ψ : R

d → R defined on D ⊂ R

d , its L 2 norm becomes ‖ ψ‖ :=
(∫ D | ψ(x)| 2 dx) 1/2 , while the inner product of ψ 1 and ψ 2 becomes 〈 ψ 1 , ψ 2 〉 =

∫
D ψ 1 (x) ψ 2 (x) dx .

Given a target function f : R

d → R

m , suppose that we have already built a single layer feed-forward network (SLFN) with

L − 1 hidden nodes, i.e, f L −1 (x) =

∑ L −1
j=1 β j g j (w

T
j
x + b j) (L = 1 , 2 , . . . , f 0 = 0), β j = [β j, 1 , . . . , β j,m

] T , and the current residual

error, denoted as e L −1 = f − f L −1 = [e L −1 , 1 , . . . , e L −1 ,m

] , does not reach an acceptable tolerance level. The framework of SCNs

provides an effective solution for how to add βL , g L (w L and b L) leading to f L = f L −1 + βL g L until the residual error e L =
f − f L falls into an expected tolerance ε. The following Theorem 1 restates the universal approximation property of SCNs

(corresponding to Theorem 7 in [21]).

Theorem 1. Suppose that span(�) is dense in L 2 space and ∀ g ∈ �, 0 < ‖ g ‖ < b g for some b g ∈ R

+ . Given 0 < r < 1 and a

nonnegative real number sequence { μL } with lim L → + ∞

μL = 0 and μL ≤ (1 − r) . For L = 1 , 2 , . . . , denoted by

δL =

m ∑

q =1

δL,q , δL,q = (1 − r − μL) ‖ e L −1 ,q ‖

2 , q = 1 , 2 , . . . , m. (3)

If the random basis function g L is generated with the following constraints:

〈 e L −1 ,q , g L 〉 2 ≥ b 2 g δL,q , q = 1 , 2 , . . . , m, (4)

and the output weights are evaluated by

212 D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222

[β∗
1 , β

∗
2 , . . . , β

∗
L] = arg min

β
‖ f −

L ∑

j=1

β j g j ‖ . (5)

Then, lim L → + ∞

‖ f − f L ‖ = 0 , where f L =

∑ L
j=1 β

∗
j
g j , β

∗
j

= [β∗
j, 1

, . . . , β∗
j,m

] T .

The construction process of SCNs starts with a small sized network, then incrementally adds hidden nodes followed by

computing the output weights. This procedure keeps going on until the model meets some certain termination criterion.

Some remarkable merits of our SCNs can be summarized as follows : (i) There is no requirement on any prior knowledge

about the architecture of the constructed network for a given task; (ii) The scope of the random weights and biases is

adjustable and automatically determined by the data rather than a fixed setting from end-users; and (iii) The input weights

and biases are randomly assigned with an inequality constraint, which can guarantee the universal approximation property.

Remark 1. In the past two decades, randomized methods for training neural networks suffer from some misunderstand-

ings on the constraint of random assignment (i.e., randomly assign the input weights and biases in a fixed interval, even

any intervals, or no specification at all). Unfortunately, in many published works the authors blindly and wrongly use the

randomness in constructing randomized learner models and mindlessly made some misleading statements without any sci-

entific justification [13] . It should be pointed out that the universal approximation theorems for RVFL networks established

in [9] are fundamental and significant to the randomized learning theory. However, these theoretical results cannot provide

us with practical and useful guidance on structure and learning parameter settings, and algorithm design and implementa-

tion aspects. Our proposed SCN framework firstly touches the base of randomized learning techniques, and draws researches

on this topic into right tracks through proper uses of constrained random parameters. Indeed, the inequalities (4) proposed

originally in [21] are essential to ensure the universal approximation property. From algorithm implementation perspectives,

a scheme to prevent SCNs from over-fitting must in place. As usually done in machine learning, the performance over a

validation set can be used to terminate the learning process.

At the end of this section, we briefly introduce a kernel density estimation method for weighting contributions of each

training data in the learning process. Basically, a kernel density estimator computes a smooth density estimation from

data samples by placing on each sample point a function representing its contribution to the density. Readers can refer

to [10] and [17] for more details on the kernel density estimation (KDE) method.

Based on KDE method, the underlying probability density function of a random variable η can be estimated by

	(η) =

N ∑

k =1

ρk K(η − ηk) , (6)

where K represents a kernel function (typically a Gaussian function) centered at the data points ηk , and ρk are weighting

coefficients (uniform weights are commonly used, i.e., ρk = 1 /N, k = 1 , 2 , . . . , N).

3. Robust stochastic configuration networks

Robust data regression seeks for a capable learner model that can successfully learn a true distribution from uncertain

data samples. This is very important for industrial applications, where the collected data samples are always contaminated

by outliers caused by the failure of measuring or transmission devices or unusual disturbances. This section details the

development of robust stochastic configuration networks (RSCNs). For a target function f : R

d → R

m , given a training dataset

with inputs X = { x 1 , x 2 , . . . , x N } , x i = [x i, 1 , . . . , x i,d]
T ∈ R

d and outputs T = { t 1 , t 2 , . . . , t N } , where t i = [t i, 1 , . . . , t i,m

] T ∈ R

m , i =
1 , . . . , N, a RSCN model can be built by solving a weighted least squares (WLS) problem, that is,

min

β,θ

N ∑

i =1

θi ‖

L ∑

j=1

β j g(w j , b j , x i) − t i ‖

2 , (7)

where θ i ≥ 0 (i = 1 , 2 , . . . , N) is the i th penalty weight, representing the contribution of the corresponding sample to the

objective function (7) . G L (x) =

∑ L
j=1 β j g(w j , b j , x) is a SCN, in which g is the activation function and L is the number of

hidden nodes, w j , b j are the input weights and biases that are stochastically configured according to Theorem 1 , and β j

represents the output weights.

Generally speaking, the penalty weights θ i (i = 1 , 2 , . . . , N) can be determined according to the reliability of the sample

x i . It is easy to understand that a higher reliability means more trust in the data that correctly represents the process be-

havior, and a lower reliability indicates less confidence on the sample that may be an outlier or noisy one. Thus, decreasing

(increasing) the penalty weights of training samples with lower (higher) reliability can eliminate or even remove negative

impacts on the learner model building.

A logical thinking to combine the original SCN framework with the WLS-based learning is to use a weighted version

of the model’s residual error in the process of building SCNs. In other words, a RSCN model can be incrementally built by

stochastically configuring the hidden parameters based on a redefined constraint (4) , and evaluating the output weights by

using the WLS solution of (7) . Given training samples X = { x 1 , x 2 , . . . , x N } , x i = [x i, 1 , . . . , x i,d]
T ∈ R

d , denoted by e L −1 (X) =

D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222 213

[e L −1 , 1 (X) , e L −1 , 2 (X) , . . . , e L −1 ,m

(X)] T ∈ R

N×m , where e L −1 ,q (X) = [e L −1 ,q (x 1) , . . . , e L −1 ,q (x N)] ∈ R

N , q = 1 , 2 , . . . , m . Let h L (X) =
[g L (w

T
L x 1 + b L) , . . . , g L (w

T
L x N + b L)] T be the output vector of the new hidden node for each input x i , i = 1 , 2 , . . . , N. Then, we

can obtain the current hidden layer output matrix, H L = [h 1 , h 2 , . . . , h L] .

According to (7) , a weighted form of e L −1 (X) can be defined if the penalty weights are available during the constructive

process of SCNs. Denoted the weighted e L −1 (X) and h L (X) by ˜ e L −1 (X) = [̃ e L −1 , 1 (X) , ̃ e L −1 , 2 (X) , . . . , ̃ e L −1 ,m

(X)] T = �e L −1 (X) , and

˜ h L (X) = �h L (X) , respectively, where � = diag { √

θ1 ,
√

θ2 , . . . ,
√

θN } . Let ˜ ξL =

∑ m

q =1
˜ ξL,q and

˜ ξL,q be defined as

˜ ξL,q =

(
˜ e T L −1 ,q (X) · ˜ h L (X)

)2

˜ h

T
L
(X) · ˜ h L (X)

− (1 − r − μL) ̃ e T L −1 ,q (X) ̃ e L −1 ,q (X) . (8)

Based on Theorem 1 , the hidden parameters (w and b) can be stochastically configured by choosing a maximum

˜ ξL among

multiple tests, subjected to ˜ ξL,q ≥ 0 , q = 1 , 2 , . . . , m .

Now, the remaining question is how to assign penalty weights θ1 , θ2 , . . . , θN along with the process of building SCNs.

Recall that if the probability density function of the residuals can be obtained or estimated, the reliabilities of the samples

will be determined. Inspired by the work in [25], we construct a probability density function of the residual error e L as

follows (here e L is regarded as a random variable)

	(e L) =

1

τN

N ∑

k =1

K

(‖ e L − e L (x k) ‖

τ

)
, (9)

where e L (x k) = [e L −1 , 1 (x k) , . . . , e L −1 ,m

(x k)] T ∈ R

m , τ = 1 . 06 ̂ σN

−1 / 5 is an estimation window width, ˆ σ is the standard devia-

tion of the residual errors, K is a Gaussian function defined by

K(t) =

1 √

2 π
exp

(
− t 2

2

)
. (10)

With these preparation, the probability of each residual error e L (x i) (i = 1 , 2 , . . . , N) can be obtained by calculating 	(e L (x i)).

Then, the penalty weights θ i (i = 1 , 2 , . . . , N) can be assigned as

θi = 	(e L (x i)) =

1

τN

N ∑

k =1

K

(‖ e L (x i) − e L (x k) ‖

τ

)
. (11)

With these penalty weights, the output weights β∗ = [β∗
1
, β∗

2
, . . . , β∗

L
] can be evaluated by solving the following WLS prob-

lem:

β∗ = arg min

β
(H L β − T) T �(H L β − T)

= (H

T
L �H L)

† H

T
L �T , (12)

where β = [β1 , β2 , . . . , βL] , H L = [h 1 , h 2 , . . . , h L] , � = �2 = diag { θ1 , θ2 , . . . , θN } .
In this paper, an alternating optimization (AO) strategy is applied for implementing RSCNs, which includes the process

of building a SCN model with a set of suitable penalty weights that control the contribution of contaminated samples.

The whole procedure begins with assigning equal penalty weights for all samples (i.e., θi = 1 , and � is an identity matrix)

and building the SCN model, followed by updating these penalty weights according to (11) , then repeating these two steps

alternatively until some certain stopping criterion is reached. It should be clarified that the penalty weights are updated

only when a round of the process of building the SCN model is completed.

Specifically, the penalty weights θ i (i = 1 , 2 , . . . , N) and the output weights β can be calculated iteratively by applying

the AO procedure, that is,

θ (ν+1)
i

=

1

τN

N ∑

k =1

K

(
e (ν)

L
(x i) − e (ν)

L
(x k)

τ

)
(13)

and

β(ν+1) = (H

T
L �

(ν+1) H L)
† H

T
L �

(ν+1) T , (14)

where ν denotes the νth iteration of the alternating optimization process, and �(ν+1) = diag { θ (ν+1)
1

, θ (ν+1)
2

, . . . , θ (ν+1)
N

} .
Here, we use e (ν)

L
(x i) to represent the residual error value for x i with θ (ν)

i
used as the present penalty weights in the

RSCN model.

Distinguished from the original SCN framework that all training samples contribute equally to the objective function, our

newly developed RSCNs treat individual samples differently and put more emphasis on data samples with higher reliability,

which indeed corresponds to lager values of the penalty weights. That means if a training output y j is corrupted by outliers

or noises, the sample pair (x j , y j) will provide less contribution to the cost function due to the relatively small value of its

corresponding penalty weight.

214 D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222

Remark 2. An important issue in the design of RSCNs is about the termination criterion. As mentioned in Remark 1 , the

performance over a validation data set can be employed as a stopping condition. Unfortunately, this method does not make

sense and cannot be applied for building RSCNs due to the presence of uncertainties in the validation data. However, the

validation testing criterion can still be used if a clean data set extracted from the true data distribution is available. In this

work, we assume that a clean validation data set is ready to be used for this purpose. Our proposed RSC-KDE Algorithm is

summarized in the following pseudo code.

RSC-KDE Algorithm

Given inputs X ={ x 1 , x 2 , . . . , x N } , x i ∈ R

d , outputs T ={ t 1 , t 2 , . . . , t N } , t i ∈ R

m ; Set L max as the maximum number of hidden

nodes, ε as the expected error tolerance, P max as the maximum times of random configuration, I max as the maximum

number of alternating optimization; Choose a set of positive scalars ϒ = { λmin : �λ : λmax } ;
1. Initialize e 0 := [t 1 , . . . , t N]

T , 0 < r < 1 , θi = 1 , �= diag { θ1 , θ2 , . . . , θN } , �, W := [] ;

2. While ν ≤ I max AND ‖ e 0 ‖ F > ε, Do

3. While L ≤ L max AND ‖ e 0 ‖ F > ε, Do

4. For λ ∈ ϒ , Do

5. For k = 1 , 2 . . . , P max , Do

6. Randomly assign ω L and b L from [−λ, λ] d and [−λ, λ] , respectively;

7. Calculate ˜ e L −1 , ˜ h L , ˜ ξL,q by Eq. (8) , set μL = (1 − r) / (L + 1) ;

8. If min { ̃ ξL, 1 ,
˜ ξL, 2 , . . . ,

˜ ξL,m

} ≥ 0

9. Save w L and b L in W , ˜ ξL in �, respectively;

10. Else Go back to Step 5

11. End If

12. End For (corresponds to Step 5)

13. If W is not empty

14. Find w

∗
L , b

∗
L maximizing ˜ ξL in �, and set H L = [h ∗1 , h

∗
2 , . . . , h

∗
L] ;

15. Break (go to Step 19);

16. Else Randomly take τ ∈ (0 , 1 − r) , renew r := r + τ , return to Step 5 ;

17. End If

18. End For (corresponds to Step 4)

19. Calculate β∗ = [β∗
1
, β∗

2
, . . . , β∗

L
] based on Eq. (14) ;

20. Calculate e L = H L β
∗ − T and obtain ˜ e L ;

21. Renew e 0 := ˜ e L , L := L + 1 ;

22. End While

23. Update θi by Eq. (13) , renew � = diag { θ1 , θ2 , . . . , θN } and ν := ν + 1 ;

24. End While

25. Return � = diag { θ1 , . . . , θN } , β∗ = [β∗
1
, β∗

2
, . . . , β∗

L
] , ω

∗ = [ω

∗
1
, ω

∗
2
, . . . , ω

∗
L
] , b ∗ = [b ∗

1
, b ∗

2
, . . . , b ∗

L
] .

4. Performance evaluation

This section reports some simulation results on a function approximation, four benchmark datasets from KEEL, 1 and

an industrial application [4] . The proposed RSC-KDE algorithm is compared to other three randomized algorithms: RVFL

[9] , improved RVFL [4] , and the probabilistic learning algorithm PRNNRW [1] . All comparisons are conducted under several

scenarios with different system settings on learning parameters and noise levels. The Root Mean Squared Error (RMSE) is

used to evaluate the generalization capability of each algorithm over the outlier-free test datasets. In addition, a robustness

analysis on the setting of ν and L max is given for the case study.

The input and output values are normalized into [0,1] before artificially adding certain level of outliers. The maximum

times of random configuration T max in RSC-KDE is set as 100, and the sigmoidal activation function g(x) = 1 / (1 + exp (−x))

is used in all simulations, which were conducted in MATLAB 7.0 on a computer with 3.5GB RAM and 2.4-GHz Intel Core 2

Duo processor.

4.1. Function approximation

Consider the following function approximation problem [6] :

y = 0 . 2 e −(10 x −4) 2 + 0 . 5 e −(80 x −40) 2 + 0 . 3 e −(80 x −20) 2 , x ∈ [−1 , 1] .
1 KEEL: http://www.keel.es/ .

http://www.keel.es/

D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222 215

-1 -0.5 0 0.5 1
x

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y

Training Samples
Target Function

(a)

-1 -0.5 0 0.5 1
x

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

Test Samples
Improved RVFL
PRNNRW
RVFL
RSC-KDE

(b)

Fig. 1. (a) 600 training samples used for function approximation at ζ = 25% , along with target function shown in red line; (b) Approximation performance

on the test dataset by four learning algorithms at ζ = 25% . (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

The training dataset contains 600 points which are randomly generated from the uniform distribution [−1 , 1] . The test

dataset, of size 600, is generated from a regularly spaced grid on [−1 , 1] . We purposely introduce outliers into the training

dataset: A variable percentage ξ of the data points is selected randomly and their corresponding function values (y) are

substituted by background noises with values uniformly distributed over [−0 . 2 , 0 . 8] . To show the advantage of RSC-KDE in

uncertain data modelling, we make comparisons on the performance among these four algorithms at each outlier percent-

age, i.e., ζ = { 0% , 5% , 10% , 15% , 20% , 25% , 30% } .
Fig. 1 (a) depicts the training samples with the outlier percentage at ξ = 25% , Fig. 1 (b) shows the learners’ performance

on the test dataset from the four algorithms, in which the proposed RSC-KDE exhibits the best performance compared with

the other three methods. For RVFL, Improved RVFL and PRNNRW, we examined different scope settings for the random

parameters, i.e., w, b ∈ [−λ, λ] , λ = 1 , 10 , 30 , 50 , 100 , 150 , to demonstrate its significant impact on the randomized learners’

performance. For each λ, different network architectures (e.g. L = 40 , 60 , 100 , 120 , 150 , 200) are used to find the pair (λ, L)

leading to the most favorable performance. For λ = 1 , 30 , 50 , 100 , we demonstrate the test results of the four algorithms in

Fig. 2 , where the average errors and standard deviations of RMSE (based on 100 trials) are plotted for each outlier percent-

age. It is clear that our proposed RSC-KDE algorithm outperforms the other methods for each case. In particular, for λ = 1 ,

the approximation performance of all other three algorithms are far worse than an acceptable level. Obviously, if the scope

setting is improper, the randomized learner models can not be expected to perform at all, as reported in [13,21] . As the

outlier percentage becomes very low, RSCN outperforms other randomized learner models, which aligns well with the con-

sequence reported in [21] . Given a relatively higher outlier percentage, for example ζ = 30% , RSC-KDE produces a promising

result with RMSE of 0.0138 ± 0.0027, that is much better than the other three algorithms. More results for λ = 1 , 30 , 50 , 100

at ζ = 10% , 15% , 20% , 25% are reported in Table 1 .

4.2. Benchmark datasets

Table 2 gives some statistics on the four datasets used in our simulations. We randomly chose 75% of the whole samples

as the training dataset while take the remainders as the test dataset. A similar strategy as done in the function approxima-

tion problem is applied to introduce different percentages of outliers into the training dataset. That is, for each normalized

training dataset, a variable percentage ζ of the data points are selected at random and the associated output values are

substituted with background noises that are uniformly distributed on the range [−0 . 5 , 0 . 5] . Finally, the contaminated output

values are distributed over [−0 . 5 , 1 . 5] instead of [0,1], while the test dataset is outlier-free for the assessment purpose.

For each benchmark dataset, we evaluate the performance of RVFL, Improved RVFL and PRNNRW with different settings

of λ and L , for example, λ = { 0 . 1 , 0 . 5 , 1 , 3 , 5 } and L = { 30 , 50 , 100 , 150 , 200 } , respectively. We conduct 50 independent trials

for each case (λ and L) and calculate their mean values and standard deviations of RMSE at different percentage of outliers.

In Fig. 3 , we plot the comparison results for RVFL, Improved RVFL, and PRNNRW with λ = 1 , and it shows that our proposed

RSC-KDE algorithm outperforms the others at each outlier percentage. From the results reported in Table 3 , it is observed

that our proposed RSC-KDE algorithm outperform the others for all these four datasets at each outlier percentage, despite

that the results obtained by other three algorithms are the ‘best’ ones selected from all results with various settings of λ
and L . Specifically in Fig. 3 , PRNNRW (with λ = 1) exhibits the worst accuracy on stock, laser, concrete, but performs better

than RVFL and Improved RVFL on treasury. Also in Table 3 , the results from PRNNRW, as obtained by the most appropriate

216 D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222

0 5% 10% 15% 20% 25% 30%
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Improved RVFL
PRNNRW
RVFL
RSC-KDE

(a) λ = 1

0 5% 10% 15% 20% 25% 30%
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

(b) λ = 30

0 5% 10% 15% 20% 25% 30%
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

(c) λ = 50

0 5% 10% 15% 20% 25% 30%
0

0.01

0.02

0.03

0.04

0.05

0.06

(d) λ = 100
Fig. 2. Test RMSE comparison on the function approximation among the four algorithms with different outlier percentage ζ . λ = 1 , 10 , 50 , 100 and L = 100

are used in RVFL, Improved RVFL and PRNNRW.

Table 1

Performance comparisons on the function approximation.

Scope setting Algorithm Test performance at different outlier percentage (MEAN, STD)

10% 15% 20% 25%

λ = 1 RVFL 0.0463,2.0e −05 0.0464,2.0e −05 0.0469,2.0e −05 0.0478,2.0e −05

Improved RVFL 0.0556,5.1e −05 0.0555,3.0e −05 0.0560,4.0e −05 0.0563,3.3e −05

PRNNRW 0.0781, 6.6e −06 0.0781, 7.3e −06 0.0781, 7.3e −06 0.0781, 6.8e −06

RSC-KDE 0.0 090 ,0.0 016 0.0 098 ,0.0 022 0.0104 ,0.0035 0.0117 ,0.0022

λ = 30 RVFL 0.0225,0.0037 0.0249,0.0039 0.0264,0.0033 0.0326,0.0032

Improved RVFL 0.0344,0.0030 0.0326,0.0036 0.0319,0.0034 0.0322,0.0028

PRNNRW 0.0491,0.0029 0.0490, 0.0013 0.0490, 0.0017 0.0492, 0.0010

RSC-KDE 0.0 090,0.0 016 0.0 098 ,0.0 022 0.0104 ,0.0035 0.0117 ,0.0022

λ = 50 RVFL 0.0248,0.0042 0.0274,0.0079 0.0288,0.0062 0.0343,0.0065

Improved RVFL 0.0247,0.0056 0.0229,0.0047 0.0218,0.0041 0.0240,0.0038

PRNNRW 0.0498, 0.0014 0.0497, 0.0020 0.0496, 0.0024 0.0494, 0.0015

RSC-KDE 0.0 090 ,0.0 016 0.0 098 ,0.0 022 0.0104 ,0.0035 0.0117 ,0.0022

λ = 150 RVFL 0.0345,0.0166 0.0353,0.0062 0.0380,0.0099 0.0386,0.0086

Improved RVFL 0.0229,0.0082 0.0214,0.0074 0.0228,0.0084 0.0284,0.0076

PRNNRW 0.0445,0.0031 0.0439,0.0032 0.0438, 0.0030 0.0441,0.0037

RSC-KDE 0.0 090,0.0 016 0.0 098,0.0 022 0.0104 ,0.0035 0.0117,0.0022

D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222 217

Table 2

Statistics of the benchmark datasets.

No. Name Instances Features

1 Stock 950 9

2 Laser 993 4

3 Concrete 1030 8

4 Treasury 1049 15

0 5% 10% 15% 20% 25% 30%
0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) stock

0 5% 10% 15% 20% 25% 30%
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(b) laser

0 5% 10% 15% 20% 25% 30%
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

(c) concrete

0 5% 10% 15% 20% 25% 30%
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Improved RVFL
PRNNRW
RVFL
RSC-KDE

(d) treasury
Fig. 3. Test RMSE comparison on four benchmark datasets among four algorithms with different outlier percentage ζ . λ = 1 and L = 150 are used in RVFL,

Improved RVFL, and PRNNRW.

combination of λ and L from the set {0.1, 0.5, 1, 3, 5} and {30, 50, 100, 150, 200}, respectively, are much better than that

shown in Fig. 3 . Indeed, for RVFL, Improved RVFL and PRNNRW, a common practice to determine a suitable scope setting

and a reasonable network architecture is based on the trial-and-error method, while the proposed RSC-KDE works robustly

with much less human intervention on the parameter setting.

4.3. Particle size estimation of mineral grinding process: a case study

In this section, we make a further investigation on the merits of our proposed RSC-KDE algorithm by using a dataset

from process industry [4] . Fig. 4 depicts the grinding process where the coarse fresh ore O F is fed into the ball mill through

the conveyor. Meanwhile, a certain amount of mill water Q is added through a pipe to maintain a proper pulp density. At
F

218 D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222

Table 3

Performance comparisons on the benchmark datasets.

Dataset Algorithm Test performance at different outlier percentage (MEAN,STD)

10% 15% 20% 25%

Stock RVFL 0.0495,0.0024 0.0531,0.0027 0.0554,0.0032 0.0590,0.0036

Improved RVFL 0.0373,0.0023 0.0404,0.0022 0.0425,0.0014 0.0456,0.0023

PRNNRW 0.0378,0.0014 0.0387, 0.0014 0.0388, 0.0011 0.0392,0.0017

RSC-KDE 0.0317,0.0014 0.0322 ,0.0016 0.0328 ,0.0012 0.0342,0.0012

Laser RVFL 0.0318,0.0033 0.0323,0.0029 0.0343,0.0030 0.0359,0.0038

Improved RVFL 0.0239,0.0023 0.0260,0.0024 0.0264,0.0021 0.0277,0.0039

PRNNRW 0.0424,0.0022 0.0424,0.0024 0.0421, 0.0026 0.0428,0.0027

RSC-KDE 0.0161,0.0013 0.0202,0.0020 0.0195 ,0.0027 0.0233,0.0014

Concrete RVFL 0.0975,0.0039 0.1038,0.0047 0.1068,0.0047 0.1092,0.0037

Improved RVFL 0.0903,0.0070 0.0967,0.0064 0.0991,0.0043 0.1022,0.0032

PRNNRW 0.1019,0.0029 0.10 08,0.0 030 0.1013, 0.0025 0.1034,0.0031

RSC-KDE 0.0749,0.0016 0.0773,0.0014 0.0805 ,0.0026 0.0812,0.0025

Treasury RVFL 0.0231,0.0012 0.0253,0.0011 0.0265,0.0013 0.0325,0.0016

Improved RVFL 0.0135,0.0 0 05 0.0145,0.0 0 04 0.0145,0.0 0 05 0.0166,0.0 0 05

PRNNRW 0.0130,0.0 0 04 0.0130,0.0 0 04 0.0131, 0.0 0 02 0.0131, 0.0 0 02

RSC-KDE 0.0 084,0.0 0 02 0.0 086,0.0 0 02 0.0 093 ,0.0 0 03 0.0109 ,0.0 0 04

Fig. 4. Flow chart of mineral grinding process [4] .

this stage, the steel balls within the mill crush the coarse ore to a finer size alone with the knocking and tumbling actions.

After grinding, the mixed ore pulp that includes both coarser and finer particles is discharged continuously from the mill

into the spiral selector for further classification with assistance of dilution water Q D mixed to the ore pulp. Next, the pulp

is separated into the overflow and underflow pulp. Finally, the underflow pulp with coarser particles is recycled back to the

mill for re-grinding, whilst the overflow pulp with finer particles (as product) is further proceeded. As can be seen that the

particle size estimation plays an important role in this circling procedure.

Particle size estimation of mineral grinding process can be formulated as a regression problem, with three input variables

including the fresh ore feed rate O F , the mill water flow rate Q F , and the dilution water flow rate Q D , and with a single

output of the unmodelled dynamics, namely � r . Denoted by x = [O F , Q F , Q D]
T and y as the input vector and the output

(refers to the estimation of the unmodelled dynamics � ̃ r), respectively. Let ˜ r represent an estimate of the particle size from

a mathematical (mechanism) model. Thus, the final estimated value of the particle size ˜ r can be evaluated by ˜ r := ̃ r + � ̃ r .

In this case study, 300 training samples and 300 test samples were collected from a hardware-in-the-loop (HIL) platform

[4] , which is composed of the following five subsystems: an optimal setting control subsystem, a human supervision sub-

system, a DCS control subsystem, a virtual actuator and sensors subsystem, and a virtual operation process subsystem. For

detailed descriptions on the operational functionalities of these subsystems, readers can refer to [4] . Both the input and out-

put values are normalized into [0,1]. Then, different levels of outliers are added into the normalized training dataset in the

similar way as done in the previous simulations, i.e, a variable percentage ζ of data points are selected randomly and the

corresponding output values are corrupted by background noises followed the uniform distribution [−0 . 5 , 0 . 5] . As a result,

the output values are distributed in the range [−0 . 5 , 1 . 5] , while the test samples are outlier-free.

The performance of these four algorithms are evaluated at several outlier percentages, i.e., ζ =
{ 0% , 5% , 10% , 15% , 20% , 25% , 30% } . Specifically, for RVFL, Improved RVFL, and PRNNRW, different settings of λ and L are

D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222 219

0 5% 10% 15% 20% 25% 30%
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(a) λ = 0.1

0 5% 10% 15% 20% 25% 30%
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Improved RVFL
PRNNRW
RVFL
RSC-KDE

(b) λ = 0.5

0 5% 10% 15% 20% 25% 30%
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(c) λ = 1

0 5% 10% 15% 20% 25% 30%
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(d) λ = 5
Fig. 5. Test RMSE comparisons on the case study between four algorithms with different outlier percentage ζ . λ = 0 . 1 , 0 . 5 , 1 , 5 and L = 50 are used in

RVFL, Improved RVFL, and PRNNRW.

used in this study. Each comparison is based on 50 independent trials, the mean value and standard deviation of RMSE are

recorded at each outlier percentage. The test performance of the four algorithms are depicted in Fig. 5 , where the presented

results for RVFL, Improved RVFL and PRNNRW with each scope setting (λ = 0 . 1 , 0 . 5 , 1 , 5) correspond to the ‘best’ records

among the trails using different L (L = 10 , 30 , 50 , 100 , 150). It can be easily found that our proposed RSC-KDE algorithm

outperforms the other three methods in most cases. Although the Improved RVFLN exhibits very close performance when

the outlier percentage is relatively lower, RSC-KDE algorithm has demonstrated the best at robustness even at high outlier

contamination rate. When λ = 0 . 5 and λ = 1 , the performance of PRNNRW has been improved a lot compared with λ = 0 . 1 ,

but are still unacceptable in comparison with Improved RVFL and RSC-KDE. For both RVFL and Improved RVFLN, there is no

remarkable difference between the results with λ = 0 . 5 and λ = 1 . Interestingly, Fig. 5 (d) shows that results from PRNNRW

(with λ = 5) at relatively higher outlier percentages (e.g. ζ = 20% , 25% , 30%) are slightly better than RSC-KDE. However, this

result needs a suitable scope setting (i.e. λ = 5), which is time-consuming in practice. In contrast, the proposed RSC-KDE

can lead to good performance than the others without any user-oriented trials for parameter setting. Table 4 summarizes

the records of our proposed RSC-KDE algorithm as well as the ‘best’ results obtained from RVFL, Improved RVFL and

PRNNRW with the ‘most appropriate’ parameter setting on L for each λ. The impact of the scope setting for the other three

randomized algorithms can be seen through comparing their records at each outlier percentage. Specifically for λ = 1 , the

test results from the four algorithms are shown in Fig. 6 , where both the real and estimated values of the normalized

particle size (of the whole test samples) are plotted.

220 D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222

Table 4

Performance comparisons on the case study.

Scope setting Algorithm Test performance at different outlier percentage (MEAN,STD)

10% 15% 20% 25%

λ = 0 . 1 RVFL 0.0213,0.0027 0.0279,0.0025 0.0274,0.0025 0.0288,0.0030

Improved RVFL 0.0 018,0.0 0 03 0.0 033, 0.0 0 03 0.0066,0.0006 0.0 097,0.0 010

PRNNRW 0.1437,0.0063 0.1451,0.0053 0.1469,0.0053 0.1465,0.0048

RSC-KDE 0.0 0 06,0.0 0 03 0.0 020 ,0.0 0 07 0.0 026,0.0 0 06 0.0 028,0.0 0 04

λ = 0 . 5 RVFL 0.0217,0.0026 0.0278,0.0024 0.0274,0.0022 0.0295,0.0035

Improved RVFL 0.0 023,0.0 0 03 0.0 064,0.0 011 0.0 078,0.0 010 0.0103,0.0032

PRNNRW 0.0238,0.0 0 05 0.0238, 0.0 0 05 0.0234,0.0 0 06 0.0230,0.0 0 05

RSC-KDE 0.0 0 06,0.0 0 03 0.0 020 ,0.0 0 07 0.0 026,0.0 0 06 0.0 028,0.0 0 04

λ = 1 RVFL 0.0213,0.0024 0.0275,0.0020 0.0269,0.0016 0.0292,0.0029

Improved RVFL 0.0 025,0.0 0 03 0.0 069,0.0 013 0.0 085,0.0 035 0.0106,0.0044

PRNNRW 0.0145,0.0014 0.0153,0.0014 0.0150,0.0015 0.0148,0.0014

RSC-KDE 0.0 0 06,0.0 0 03 0.0 020,0.0 0 07 0.0 026,0.0 0 06 0.0 028,0.0 0 04

λ = 5 RVFL 0.0305,0.0039 0.0463,0.0126 0.0429,0.0100 0.0468,0.0144

Improved RVFL 0.0 050,0.0 021 0.010 0,0.0 049 0.0123,0.0043 0.0169,0.0087

PRNNRW 0.0 017,0.0 0 07 0.0 021,0.0 0 09 0.0 023 ,0.0 0 09 0.0 022 ,0.0 0 07

RSC-KDE 0.0 0 06,0.0 0 03 0.0 020,0.0 0 07 0.0 026, 0.0 0 06 0.0 028, 0.0 0 04

0 50 100 150 200 250 300
Sample Sequence Number

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

N
or

m
al

iz
ed

 P
ar

tic
le

 S
iz

e

Real
Estimation

(a) RVFL

0 50 100 150 200 250 300
Sample Sequence Number

0

0.2

0.4

0.6

0.8

1

1.2
N

or
m

al
iz

ed
 P

ar
tic

le
 S

iz
e

Real
Estimation

(b) Improved RVFL

0 50 100 150 200 250 300
Sample Sequence Number

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
ar

tic
le

 S
iz

e

Real
Estimation

(c) PRNNRW

0 50 100 150 200 250 300
Sample Sequence Number

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
ar

tic
le

 S
iz

e

Real
Estimation

(d) RSC-KDE
Fig. 6. Test results of the four algorithms at ζ = 30% on the case study. λ = 1 and L = 50 are used in RVFL (a), Improved RVFL (b), and PRNNRW (c).

D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222 221

Table 5

Robustness analysis of ν and L with different outlier percentage ζ on the case study.

Outlier Number Test performance with different setting of L (Mean RMSE)

percentage of AO L = 10 L = 20 L = 30 L = 50 L = 60 L = 80

ζ = 0% ν = 2 0.0025 0.0 0 03 0.0 0 03 0.0 0 02 0.0 0 02 0.0 0 02

ν = 3 0.0025 0.0 0 03 0.0 0 03 0.0 0 02 0.0 0 02 0.0 0 02

ν = 5 0.0025 0.0 0 03 0.0 0 03 0.0 0 02 0.0 0 02 0.0 0 02

ν = 8 0.0026 0.0 0 03 0.0 0 03 0.0 0 02 0.0 0 02 0.0 0 02

ν = 10 0.0026 0.0 0 03 0.0 0 03 0.0 0 02 0.0 0 02 0.0 0 02

ν = 12 0.0028 0.0 0 03 0.0 0 03 0.0 0 02 0.0 0 02 0.0 0 02

ζ = 10% ν = 2 0.0026 0.0030 0.0072 0.0216 0.0334 0.0501

ν = 3 0.0024 0.0010 0.0024 0.0100 0.0200 0.04 4 4

ν = 5 0.0024 0.0 0 09 0.0012 0.0076 0.0128 0.0290

ν = 8 0.0022 0.0010 0.0012 0.0055 0.0091 0.0228

ν = 10 0.0023 0.0010 0.0012 0.0060 0.0094 0.0194

ν = 12 0.0025 0.0 0 09 0.0012 0.0057 0.0088 0.0244

ζ = 30% ν = 2 0.0101 0.0173 0.0544 0.0950 0.1315 0.2322

ν = 3 0.0051 0.0081 0.0347 0.0932 0.1493 0.2057

ν = 5 0.0040 0.0056 0.0161 0.0966 0.1574 0.2182

ν = 8 0.0039 0.0051 0.0102 0.0870 0.1604 0.2326

ν = 10 0.0038 0.0053 0.0095 0.1017 0.1688 0.2366

ν = 12 0.0041 0.0050 0.0099 0.0959 0.1621 0.2308

Before ending up this work, we conduct a robustness analysis on the key parameters (L and ν) to investigate their

impacts on the performance of our proposed RSC-KDE algorithm. The test results for different combination of L and ν
are reported in Table 5 with ζ = 0% , ζ = 10% and ζ = 30% , respectively. For ζ = 0% , there is no much difference among the

results with different ν for each setting of L , implying that the AO process is not necessary. In this case, RSC-KDE is identical

to the original SC algorithm (SC-III in [21]). When ζ = 10% , the most appropriate setting of the architecture is L = 20 while

the iteration times in AO can be selected as ν = 3 , 5 , 8 , 10 , 12 . At this percentage of outliers, it is fair to say that the accuracy

of RSC-KDE with L = 20 is preferable and stay within a stable level (i.e. RMSE is around 0.0010) provided that ν is set equal

or larger than 3. Similar to the case of ζ = 30% , the most appropriate setting of the architecture is L = 10 while the value

of ν can be selected from the set {5, 8, 10, 12}. All these records suggest that RSC-KDE performs robustly for uncertain data

modelling with smaller iteration times in AO (between 5 and 12). These empirical results offer us some information on the

setting of ν , although it is data dependent.

5. Concluding remarks

Uncertain data modelling problems appear in many real-world applications, it is significant to develop advanced machine

learning techniques to achieve better modelling performance. This paper proposes a robust version of stochastic configura-

tion networks for problem solving. Empirical results reported in this work clearly indicate that the proposed RSCNs, as one

of the extensions of our recently developed SCN framework in [21] , have great potential in dealing with robust data regres-

sion problems. From the implementation perspective, our design methodology needs an assumption on the availability of a

clean validation dataset, which helps to prevent the learner from over-fitting during the course of incrementally constructing

stochastic configuration networks. In practice, however, such a hypothesis is not always applicable. Thus, further research on

this topic is necessary. A plenty of explorations are being expected, such as the use of various cost functions for evaluating

the output weights, development of online version of RSCNs, and distributed RSCNs for large-scale data modelling.

Acknowledgements

The authors would like to thank the editors and reviewers for their insightful comments and suggestions on improving

the quality of this publication. Also, we are grateful to Dr. Wei Dai from China University of Mining Technology for his

sharing the data used in the case study.

References

[1] F. Cao , H. Ye , D. Wang , A probabilistic learning algorithm for robust modeling using neural networks with random weights, Inf. Sci. 313 (2015) 62–78 .
[2] D.S. Chen , R.C. Jain , A robust backpropagation learning algorithm for function approximation, IEEE Trans. Neural Networks 5 (3) (1994) 467–479 .

[3] C.C. Chuang , S.F. Su , J. Tsong , C.C. Hsiao , Robust support vector regression networks for function approximation with outliers, IEEE Trans. Neural

Networks 13 (6) (2002) 1322–1330 .
[4] W. Dai , Q. Liu , T.Y. Chai , Particle size estimate of grinding processes using random vector functional link networks with improved robustness, Neuro-

computing 169 (2015) 361–372 .
[5] M.T. El-Melegy , Random sampler m-estimator algorithm with sequential probability ratio test for robust function approximation via feed-forward

neural networks, IEEE Trans. Neural Networks Learn. Syst. 24 (7) (2013) 1074–1085 .
[6] A.N. Gorban , I. Tyukin , D.V. Prokhorov , K. Sofeikov , Approximation with random bases: pro-et contra, Inf. Sci. 364–365 (2016) 129–145 .

http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0001
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0001
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0001
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0001
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0002
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0002
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0002
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0003
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0003
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0003
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0003
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0003
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0004
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0004
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0004
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0004
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0005
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0005
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0006
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0006
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0006
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0006
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0006

222 D. Wang, M. Li / Information Sciences 412–413 (2017) 210–222

[7] F.R. Hampel , E.M. Ronchetti , P.J. Rousseeuw , W.A. Stahel , Robust Statistics: The Approach Based on Influence Functions, John Wiley & Sons, 2011 .
[8] P. Huber , Robust statistics, Wiley Series in Probability and Mathematical Statistics, Wiley, 1981 .

[9] B. Igelnik , Y.H. Pao , Stochastic choice of basis functions in adaptive function approximation and the functional-link net, IEEE Trans. Neural Networks 6
(6) (1995) 1320–1329 .

[10] L.J. Latecki , A. Lazarevic , D. Pokrajac , Outlier detection with kernel density functions, in: Proceedings of the 5th International Conference on Machine
Learning and Data Mining in Pattern Recognition,Berlin, Heidelberg, 2007, pp. 61–75 .

[11] A.M. Leroy , P.J. Rousseeuw , Robust regression and outlier detection, Wiley Series in Probability and Mathematical Statistics, Wiley, 1987 .

[12] K. Liano , Robust error measure for supervised neural network learning with outliers, IEEE Trans. Neural Networks 7 (1) (1996) 246–250 .
[13] M. Li , D. Wang , Insights into randomized algorithms for neural networks: practical issues and common pitfalls, Inf. Sci. 382–383 (2017) 170–178 .

[14] D. Lowe , Multi-variable functional interpolation and adaptive networks, Complex Syst. 2 (1988) 321–355 .
[15] P. Meer , D. Mintz , A. Rosenfeld , D.Y. Kim , Robust regression methods for computer vision: a review, Int. J. Comput. Vis. 6 (1) (1991) 59–70 .

[16] Y.H. Pao , Y. Takefji , Functional-link net computing, IEEE Comput. J. 25 (5) (1992) 76–79 .
[17] P. Ramsay , D. Scott , Multivariate Density Estimation, Theory, Practice, and Visualization, Wiley, 1993 .

[18] S. Scardapane, D. Wang, Randomness in neural networks: an overview, Wiley Interdiscip. Rev. 7 (2) (2017) e1200, doi: 10.1002/widm.1200 .
[19] J.A. Suykens , J. De Brabanter , L. Lukas , J. Vandewalle , Weighted least squares support vector machines: robustness and sparse approximation, Neuro-

computing 48 (1) (2002) 85–105 .

[20] P.H. Torr , A. Zisserman , MLESAC: A new robust estimator with application to estimating image geometry, Comput. Vision Image Understanding 78 (1)
(20 0 0) 138–156 .

[21] D. Wang, M. Li, Stochastic configuration networks: fundamentals and algorithms, arXiv:1702.03180 [cs.NE] (2017).
[22] X. Zhuang , T. Wang , P. Zhang , A highly robust estimator through partially likelihood function modeling and its application in computer vision, IEEE

Trans. Pattern Anal. Mach. Intell. 14 (1) (1992) 19–35 .

http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0007
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0007
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0007
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0007
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0007
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0008
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0008
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0009
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0009
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0009
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0010
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0010
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0010
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0010
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0011
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0011
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0011
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0012
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0012
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0013
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0013
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0013
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0014
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0014
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0015
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0015
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0015
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0015
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0015
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0016
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0016
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0016
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0017
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0017
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0017
http://dx.doi.org/10.1002/widm.1200
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0019
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0019
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0019
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0019
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0019
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0020
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0020
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0020
http://arxiv.org/abs/1702.03180
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0021
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0021
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0021
http://refhub.elsevier.com/S0020-0255(17)30763-6/sbref0021

	Robust stochastic configuration networks with kernel density estimation for uncertain data regression
	1 Introduction
	2 Revisit of stochastic configuration networks
	3 Robust stochastic configuration networks
	4 Performance evaluation
	4.1 Function approximation
	4.2 Benchmark datasets
	4.3 Particle size estimation of mineral grinding process: a case study

	5 Concluding remarks
	 Acknowledgements
	 References

