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Abstract—It is challenging to develop point prediction5
models with high accuracy due to that outliers and noise6
are commonly present in the real-world data. In this context,7
this article proposes a novel robust stochastic configu-8
ration network (SCN) and uses the bootstrap ensemble9
strategy to construct prediction intervals (PIs). Since the10
output weights of the original SCN are computed by the11
least-squares method, which is sensitive to noise with an12
unknown distribution or outliers, a robust SCN based on a13
mixture of the Gaussian and Laplace distributions (MoGL-14
SCN) in the Bayesian framework is proposed. The mixed15
distributions can effectively characterize the complex16
distributions of the real-world data, and their heavy-tailed17
properties can improve the robustness of SCNs. Further-18
more, there are no analytical solutions available to obtain19
the network parameters due to the assumption on the20
mixed distributions, hence, the parameters of the MoGL-21
SCN are estimated by the expectation–maximization algo-22
rithm. In addition, considering the uncertainties caused by23
both the model mismatch and noise in the real-world data, a24
bootstrap ensemble strategy using MoGL-SCN is designed25
to construct the PIs. The experimental results on two26
benchmark datasets and a real-world dataset demonstrate27
the effectiveness of the proposed method in terms of the28
quality of PIs, prediction accuracy, and robustness.29

Index Terms—Bootstrap, expectation-maximization (EM)30
algorithm, mixed distributions, prediction intervals, robust31
modeling, stochastic configuration networks.32

I. INTRODUCTION33

PREDICTING the key variables in industrial processes is34

crucial for managers and engineers to make appropriate35

decisions, and the data-driven prediction models for the key36
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process variables have been widely developed [1], [2]. So far, 37

many data-driven prediction models have been applied to the 38

industrial processes, such as the debutanizer column [3] and 39

mineral grinding process [4]. Among the data-driven methods, 40

one of the single hidden layer feed-forward networks (SLFNs), 41

namely, the random vector functional-link (RVFL) network [5] 42

has drawn increasing attention and achieved satisfactory ap- 43

plication performance [6]. But determining the ranges of the 44

input weights and biases of RVFL is challenging [7]. To solve 45

this problem, an innovative randomized learner model, termed 46

stochastic configuration networks (SCNs), was proposed in [8]. 47

The input weights and biases of SCNs are generated in vary- 48

ing ranges and determined by a data-dependent supervisory 49

mechanism [8], and then, these randomly generated parameters 50

are kept fixed. Hence, compared with the traditional neural 51

networks, the simple structure and fast learning speed of SCNs 52

can reduce the computational cost. The supervisory mechanism 53

suggested in [8] can effectively avoid producing junk nodes 54

and guarantee the universal approximation property of SCNs. 55

In addition, the inequality supervisory mechanism of the SCN 56

for the selection of random parameters can exactly improve the 57

prediction performance [8]. Therefore, the SCN and its variants 58

have been successfully applied in the field of data modeling with 59

promising performance [9], [10]. 60

However, in the real-world applications, most data are col- 61

lected in noisy environments, therefore, outliers are commonly 62

present owing to the influence of different types of noise. If 63

a training dataset is contaminated with unknown noise or out- 64

liers, the accuracy and reliability of the resulting model will 65

deteriorate [11]. Recently, data-driven robust modeling methods 66

have become increasingly popular. M-estimation is a commonly 67

used robust technique that can eliminate the influence of noise 68

or outliers on the modeling performance by constructing robust 69

cost functions [12], and it has been successfully used to build ro- 70

bust back-propagation neural networks (BPNNs) [13] and robust 71

self-organizing maps (SOMs) [14]. However, the BP-based al- 72

gorithms suffer from the problem of parameter initialization and 73

also have some drawbacks such as slow convergence and conver- 74

gence to local optima [15]. To solve these problems, the robust 75

RVFLs based on the M-estimation and kernel density estimation 76

(KDE) have been studied and successfully used in the blast 77

furnace iron-making process [16] and grinding process [17]. 78

Moreover, the KDE method has also been implemented to build 79
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the robust SCNs and the resulting robust SCNs have obtained80

the satisfied performance in the industrial applications [18].81

Additionally, neural networks in the Bayesian framework82

have been extensively studied, such as the multilayer perceptron83

networks [19] and the reservoir computing networks [20], in84

which the noise is assumed to be of the Gaussian distribution. It85

is well known that the Gaussian distribution is not robust to out-86

liers. The Laplace distribution is insensitive to noise and outliers87

due to its heavy-tailed property [21], [22]. Therefore, the echo88

state networks and the neural networks with random weights in89

the Bayesian framework have also been studied, in which the90

noise and outliers are assumed to follow a single Laplace distri-91

bution [23], [24]. However, in numerous real-world applications,92

the distribution of noise or outliers may be more complex due93

to the uncertain and heterogeneous environments [25]. As a94

result, no single distribution may be appropriate. Therefore, the95

assumption on a specific distribution of noise or outlier may96

lead to weak robustness and low prediction accuracy and inhibit97

optimal modeling performance. Compared with using a specific98

distribution, the mixture of different types of distributions can99

provide a better characterization of the complex statistical dis-100

tribution of noise or outliers, and the heavy-tailed properties of101

mixed distributions can improve the robustness of the resulting102

model.103

Robust data modeling techniques can alleviate some uncer-104

tainties caused by noise or outliers. Furthermore, the uncertainty105

from mismatching parameters of the models should also be106

taken into account. Moreover, the uncertainties caused by the107

real-world data and model mismatch can lead to unacceptable108

prediction performance if the point prediction occurs without109

performing a quantitative reliability analysis of the prediction110

errors [26], [27]. Fortunately, the prediction intervals (PIs) can111

overcome the deficiencies of the traditional point prediction112

methods by considering the uncertainties caused by both the113

real-world data and the model mismatch [28]. The PIs have been114

well used in the real-world applications such as the wind power115

generation process [29], the traffic noise measurement [30], and116

the prediction of gas flow in the blast furnace [31]. In the methods117

of constructing PIs, the bootstrap strategy is the most suitable118

candidate due to that it can construct reliable PIs and reduce119

the influence of model mismatch, it also has the advantage of120

easy implementation [32], [33]. Hence, the bootstrap strategy is121

preferable for constructing PIs.122

In this article, we aim to develop a novel robust estimation123

approach with SCNs to improve the prediction performance124

under a related assumption on noise distribution, resulting in125

a robust SCN model based on a mixture of Gaussian and126

Laplace distributions (MoGL-SCN) for constructing PIs. The127

heavy-tailed properties of the mixed Gaussian and Laplace dis-128

tributions can improve the robustness of the model and alleviate129

the influence of noise and outliers on the modeling performance.130

Moreover, due to the assumption on the mixed distributions,131

the parameters of the MoGL-SCN have no analytical solutions,132

therefore, the expectation-maximization (EM)-algorithm-based133

parameter estimation is derived. Furthermore, to quantify the134

reliability and uncertainty of the point prediction results, the135

PIs are developed using the bootstrap ensemble MoGL-SCN136

(termed BE-MoGL-SCN). The performance of the proposed 137

method is evaluated on two benchmark datasets and a real-world 138

dataset. The experimental results indicate the effectiveness of the 139

proposed method. 140

The rest of this article is organized as follows. Section II 141

briefly introduces the SCNs, the properties of the Laplace distri- 142

bution. Section III presents the proposed MoGL-SCN, the EM- 143

algorithm-based parameter estimation of the MoGL-SCN and 144

the PIs based on bootstrap ensemble MoGL-SCN. Sections IV 145

and V give the experimental results on two benchmark datasets 146

and a real-world dataset, respectively. Finally, Section VI con- 147

cludes this article. 148

II. PRELIMINARIES 149

This section briefly introduces the SCN concept [8] and some 150

properties of the Laplace distribution. 151

A. Stochastic Configuration Networks 152

Assume that a set of data DDD = {XXX,yyy} = {(xxxn, yn) ∈ Rd × 153

R}Nn=1 is given. An SCN with P − 1 hidden nodes can be 154

described as follows: 155

fP−1(XXX;βββ) =

N∑

n=1

P−1∑

p=1

βpgp(www
T
p xxxn + bp) =HHH(XXX)βββ (1)

where P = 1, . . . , p = 1, . . . , P − 1, βββ = [β1, β2, . . . , βP−1]
T 156

denotes the output weights, wwwp ∈ Rd and bp ∈ R are the input 157

weights and bias of the pth hidden node, respectively, and g(·) 158

denotes an activation function. The output matrixHHH(XXX) of the 159

hidden layer is defined as follows: 160
⎧
⎪⎪⎨

⎪⎪⎩

HHH(XXX) = [hhhT (xxx1), . . . ,hhh
T (xxxn), . . . ,hhh

T (xxxN )]T

hhh(xxxn) = [g1(www
T
1 · xxxn + b1),

. . . , gP−1(www
T
P−1 · xxxn + bP−1)]

(2)

where the superscript T denotes the matrix transpose. 161

Then,βββ can be obtained by the least-squares method [8], [10] 162

βββ∗ = argmin
βββ

1
2
‖yyy −HHH(XXX)βββ‖2

2

= [HHH(XXX)THHH(XXX)]−1HHH(XXX)Tyyy (3)

where yyy = [y1, . . . , yN ]T and ‖ · ‖2 is the Euclidean norm. 163

If the SCN with P − 1 hidden nodes does not meet the 164

termination criterion, a new hidden node should be produced 165

and its output is expressed as follows: 166

GGGP (XXX) = [gP (www
T
Pxxx1 + bP ), . . . , gP (www

T
PxxxN + bP )]

T . (4)

The input weights wwwP and bias bP of the new hidden node 167

should satisfy the following supervisory mechanism: 168

ζ =
〈
eeeTP−1,GGGP (XXX)

〉2/〈
GGGT

P (XXX),GGGP (XXX)
〉

− (1 − r − ρP )×
〈
eeeTP−1, eeeP−1

〉
> 0 (5)

where eeeP−1 = yyy −HHH(XXX)βββ∗ represents the residual error 169

vector of the SCN with P − 1 hidden nodes, 0 < ρP < 1 − r, 170

0 < r < 1, limP→∞ρP = 0, and 〈·, ·〉 is the scalar product. 171
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The new hidden nodes are generated until some relevant172

termination criteria (i.e., the predefined error tolerance or the173

maximum number of hidden nodes) are met. More details about174

the SCNs can be found in [8].175

Remark 1: According to the SCN algorithm, Tmax new hid-176

den nodes are produced and the input weights and biases are177

assigned in ranges of [−λj , λj ], j = 1, . . . , J . The node with178

the largest ζ is chosen as the newly added one [8], [10].179

B. Properties of the Laplace Distribution180

The basic probability density function (PDF) of the Laplace181

distribution can be written as follows:182

L(x|μ, η) = 1√
2η2

exp

(
−
√

2 |x− μ|
η

)
(6)

where x denotes a random variable, and μ and η > 0 represent183

the location and scale parameters, respectively.184

A random variable that follows a Laplace distribution can185

be represented as a mixture of random variables that follow a186

normal distribution and a distribution related to the exponential187

distribution [21], [22]. A random variable v is introduced that188

follows a distribution related to the exponential distribution, and189

its PDF is defined as follows:190

g(v) =
1
v3

exp

(
− 1

2v2

)
. (7)

If v is given, then the conditional distribution of x is a normal191

distribution [21], [22]192

N (x|v, μ, η) = v√
πη2

exp

[
−v

2(x− μ)2

η2

]
. (8)

As described in [21] and [22], by introducing v, we can obtain193

the following PDF of the joint distribution:194

L(x, v|μ, η) = N (x|v, μ, η) · g(v)

=
1

v2
√
πη2

exp

[
−v

2(x− μ)2

η2
− 1

2v2

]
. (9)

III. PREDICTION INTERVALS BASED ON THE BE-MOGL-SCN195

This section details the proposed MoGL-SCN framework196

including the process of parameter estimation and prediction197

intervals construction.198

A. Robust SCN Based on the Mixture of Gaussian and199

Laplace Distributions200

It is well known that the data collected from the real-world201

applications are uncertain and may be influenced by unknown202

noise or outliers. Consequently, a robust SCN based on the203

mixture of Gaussian and Laplace distributions is presented, and204

the structure is shown in Fig. 1.205

Given a dataset DDD = {XXX,yyy} = {(xxxn, yn) ∈ Rd ×R}Nn=1,206

for an SCN with P hidden nodes and the nth sample, according207

Fig. 1. Structure of the proposed method of constructing PIs.

to Fig. 1, we can derive the following equation: 208

yn = ŷn + εn = fP (xxxn;βββ) + εn = hhh(xxxn)βββ + εn (10)

where εn is the random noise and ŷn is the predicted value. To 209

improve the robustness of the SCN, the noise εn is assumed to 210

follow a mixture of the Gaussian distribution N (ε|0, σ2
G) and 211

the K − 1 Laplace distributions L(ε|0, σL;k) [with K (K ≥ 2) 212

components] with the appropriate mixing coefficients, namely 213

p(ε) = τ1N (ε|0, σ2
G) +

K∑

k=2

τkL(ε|0, σL;k) (11)

where k = 1, . . .K, ΓΓΓ = {τ1, τ2, . . . , τK} are the mixing coef- 214

ficients, τk ≥ 0,
∑K

k=1 τk = 1, and ΣΣΣ = {σ2
G , σL;2, . . . , σL;K}. 215

And then, the PDF of the mixed distributions of yn can be 216

expressed as follows: 217

p(yn|xxxn,βββ,ΓΓΓ,ΣΣΣ)

= τ1N (yn|hhh(xxxn)βββ, σ2
G) +

K∑

k=2

τkL(yn|hhh(xxxn)βββ, σL;k). (12)

The first term on the right side of (12) explains the normal 218

data, which are called the “valid data.” The second term is used 219

to explain the data with unknown noise or outliers, which are 220

called the “invalid data.” 221

By introducing the variable vvv = {vn}Nn=1 associated with 222

the exponential distribution, one can obtain a new dataset SSS = 223

{XXX,yyy,vvv} = {xxxn, yn, vn}Nn=1. Then, the joint PDF of yn and vn 224

can be rewritten as follows: 225

p(yn, vn|xxxn,βββ,ΓΓΓ,ΣΣΣ)

= τ1N (yn|hhh(xxxn)βββ, σ2
G) +

K∑

k=2

τkL(yn, vn|hhh(xxxn)βββ, σL;k)

(13)

where L(yn, vn|hhh(xxxn)βββ, σL;k) can be computed by (9). 226
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Assume that all samples are drawn independently, then the227

following likelihood function can be obtained:228

p(yyy,vvv|XXX,βββ,ΓΓΓ,ΣΣΣ) =
N∏

n=1

p(yn, vn|xxxn,βββ,ΓΓΓ,ΣΣΣ)

=

N∏

n=1

{τ1N (yn|hhh(xxxn)βββ, σ2
G)

+

K∑

k=2

τkL(yn, vn|hhh(xxxn)βββ, σL;k)}. (14)

In the parameter solution process, compared with the maxi-229

mum likelihood estimation, the maximum a posterior (MAP) es-230

timation can effectively avoid the singular problem [34]. There-231

fore, the MAP estimation is adopted to optimize the parameters.232

Generally, if there is little empirical knowledge about the output233

weights, then the prior of the output weights is assumed to follow234

a Gaussian distribution [34]. Then, the prior of output weights235

can be formulated as follows:236

p(βββ|σ2
β) =

1

(2πσ2
β)

P/2
exp

(
−‖βββ‖2

2σ2
β

)
. (15)

According to Bayes’ theorem, the posterior distribution of237

the output weightsβββ of the MoGL-SCN can be expressed by the238

following formula:239

p(βββ|SSS,ΓΓΓ,ΣΣΣ, σ2
β) ∝ p(yyy,vvv|XXX,βββ,ΓΓΓ,ΣΣΣ) · p(βββ|σ2

β) (16)

Then, we take the logarithm of p(βββ|SSS,ΓΓΓ,ΣΣΣ, σ2
β):240

ln p(βββ|SSS,ΓΓΓ,ΣΣΣ, σ2
β) = ln p(yyy,vvv|XXX,βββ,ΓΓΓ,ΣΣΣ)

+ ln p(βββ|σ2
β) + c (17)

where c is a constant.241

Therefore, the output weights βββ and the hyperparameters ΓΓΓ,242

ΣΣΣ, and σ2
β can be obtained by maximizing ln p(βββ|SSS,ΓΓΓ,ΣΣΣ, σ2

β)243

in the MAP estimation244

{βββ,ΓΓΓ,ΣΣΣ, σ2
β}∗ = argmax

βββ,ΓΓΓ,ΣΣΣ,σ2
β

{ln p(βββ|SSS,ΓΓΓ,ΣΣΣ, σ2
β)}. (18)

Nevertheless, due to the assumption on the mixed distribu-245

tions, there are no analytical solutions to the aforementioned246

problem. The EM algorithm [35] can solve the optimization247

problem (18). To implement the EM algorithm, we should248

introduce the latent variable zzzn = {zkn}Kk=1, where zkn = 1 if249

yn is from the kth component, otherwise, zkn = 0. Then, the250

prior distribution of zzzn is written as follows:251

p(zzzn) =

K∏

k=1

τzkn

k . (19)

For the complete data (xxxn, yn, vn, zzzn), the following joint252

PDF can be obtained:253

p(yn, vn, zzzn|xxxn,βββ,ΓΓΓ,ΣΣΣ)
= p(yn, vn|xxxn, zzzn,βββ,ΓΓΓ,ΣΣΣ)p(zzzn)
=
[
τ1N (yn|hhh(xxxn)βββ, σ2

G)
]z1n

·
K∏

k=2

[τkL(yn, vn|hhh(xxxn)βββ, σL;k)]zkn . (20)

Given a complete dataset TTT = {XXX,yyy,vvv,ZZZ}, ZZZ = {zzzn}Nn=1, 254

the likelihood function (14) can be reexpressed as follows: 255

p(yyy,vvv,ZZZ|XXX,βββ,ΓΓΓ,ΣΣΣ) =
N∏

n=1

p(yn, vn, zzzn|xxxn,βββ,ΓΓΓ,ΣΣΣ)

=
N∏

n=1

{
[τ1N (yn|hhh(xxxn)βββ, σ2

G)]
z1n

·
K∏

k=2

[τkL(yn, vn|hhh(xxxn)βββ, σL;k)]zkn

}
.

(21)

The logarithm of the posterior distribution of the complete 256

dataset can be written as follows: 257

ln p(βββ|TTT ,ΓΓΓ,ΣΣΣ, σ2
β) = ln p(yyy,vvv,ZZZ|XXX,βββ,ΓΓΓ,ΣΣΣ)

+ ln p(βββ|σ2
β) + c. (22)

Then, by combining (22) with (15) and (21), one can obtain 258

the following expression: 259

ln p(βββ|TTT ,ΓΓΓ,ΣΣΣ, σ2
β)=

N∑

n=1

ln p(yn, vn, zzzn|xxxn,βββ,ΓΓΓ,ΣΣΣ)

+ln p(βββ|σ2
β) + c

=

N∑

n=1

z1n

[
ln τ1−

lnσ2
G

2
− (yn−hhh(xxxn)βββ)2

2σ2
G

]

+

N∑

n=1

K∑

k=2

zkn

(
ln τk−ln v2

n−
lnσ2

L;k
2

)

+

N∑

n=1

K∑

k=2

zkn

[
− v2

n(yn−hhh(xxxn)βββ)2

σ2
L;k

− 1
2v2

n

]

−P

2
lnσ2

β − 1
2σ2

β

‖βββ‖2 + c. (23)

In the expectation step (E-step) of the EM algorithm, given the 260

datasetDDD, by taking the conditional expectation of the logarithm 261

of the posterior distribution ln p(βββ|TTT ,ΓΓΓ,ΣΣΣ, σ2
β) of the complete 262

dataset and omitting the terms that are not associated with the 263

parameters {βββ,ΓΓΓ,ΣΣΣ, σ2
β}, we can obtain the following formula: 264

E[ln p(βββ|TTT ,ΓΓΓ,ΣΣΣ, σ2
β)|DDD]

=

N∑

n=1

E[z1n|(xxxn, yn)]
(
ln τ1 −

lnσ2
G

2

)

−
N∑

n=1

E[z1n|(xxxn, yn)]
[

1
2σ2

G
(yn − hhh(xxxn)βββ)

2
]

+

N∑

n=1

K∑

k=2

E[zkn|(xxxn, yn)]
(
ln τk − lnσ2

L;k
2

)

−
N∑

n=1

K∑

k=2

{
E[zkn|(xxxn, yn)]
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· E[v2
n|(xxxn, yn)](yn − hhh(xxxn)βββ)

2

σ2
L;k

}

− P

2
lnσ2

β − 1
2σ2

β

‖βββ‖2 + c1 (24)

where E(·) denotes the expectation operator and c1 denotes a265

constant that is independent of parameters {βββ,ΓΓΓ,ΣΣΣ, σ2
β}.266

For k = 1, we can obtain the following relation:267

γ1n
Δ
= E[z1n|(xxxn, yn)]

=
τ1N (yn|hhh(xxxn)βββ, σ2

G)

τ1N (yn|hhh(xxxn)βββ, σ2
G) +

∑K
k=2 τkL(yn|hhh(xxxn)βββ, σL;k)

.

(25)

For k ≥ 2, we can obtain268

γkn
Δ
= E[zkn|(xxxn, yn)]

=
τkL(yn|hhh(xxxn)βββ, σL;k)

τ1N (yn|hhh(xxxn)βββ, σ2
G) +

∑K
k=2 τkL(yn|hhh(xxxn)βββ, σL;k)

.

(26)

And E[v2
n|(xxxn, yn)] is calculated as follows:269

χkn
Δ
= E[v2

n|(xxxn, yn)] =
σL;k√

2 |yn − hhh(xxxn)βββ|
. (27)

More information concerning the calculation process of χkn270

can be found in [21].271

Subsequently, in the maximization step (M-step) of the EM272

algorithm, we maximize E[ln p(βββ|TTT ,ΓΓΓ,ΣΣΣ, σ2
β)|DDD] with respect273

to {βββ,ΓΓΓ,ΣΣΣ, σ2
β} as follows:274

{βββ,ΓΓΓ,ΣΣΣ, σ2
β}∗ = argmax

βββ,ΓΓΓ,ΣΣΣ,σ2
β

E[ln p(βββ|TTT ,ΓΓΓ,ΣΣΣ, σ2
β)|DDD]. (28)

Let ∂E[ln p(βββ|TTT ,ΓΓΓ,ΣΣΣ, σ2
β)|DDD]/∂{βββ,ΓΓΓ,ΣΣΣ, σ2

β} = 0, we can275

obtain the following iterative formulas:276

τ
(q+1)
k =

tr(γγγ
(q)
kn )

N
(29)

where γγγ(q)kn = diag{γ(q)kn }Nn=1, tr(·) denotes the trace operator,277

and q denotes the iteration number of the EM algorithm.278

σ
2 (q+1)
G =

∥∥θθθ(q) · (yyy −HHH(XXX)βββ(q)
)∥∥2

tr(γγγ
(q)
1n )

(30)

where θθθ(q) = [θ
(q)
1 , . . . , θ

(q)
n , . . . , θ

(q)
N ] and θ(q)n =

√
γ
(q)
1n .279

σ
2 (q+1)
L;k =

∥∥∥υυυ(q)k · (yyy −HHH(XXX)βββ(q)
)∥∥∥

2

tr
(
γγγ
(q)
kn

) (31)

where υυυ(q)k = [υ
(q)
1 k , . . . , υ

(q)
Nk] and υ(q)nk =

√
2
∑N

n=1 γ
(q)
knχ

(q)
kn .280

Then, we can obtain the estimation of σ(q+1)
L;k as 281

σ
(q+1)
L;k =

∣∣∣υυυ(q)k · (yyy −HHH(XXX)βββ(q)
)∣∣∣

√
tr
(
γγγ
(q)
kn

) . (32)

The estimation of σ2
β is computed as follows: 282

σ
2 (q+1)
β =

∥∥βββ(q)
∥∥2

P
. (33)

The output weights of the MoGL-SCN can be calculated using 283

the iteratively reweighted regularized least-squares method as 284

βββ(q+1) =
[
HHHT (XXX)Ψ(q+1)HHH(XXX) + σ

2 (q+1)
G IIIP

]−1

·
[
HHHT (XXX)Ψ(q+1)yyy

]
(34)

where IIIP denotes an identity matrix with P dimensions and 285

Ψ(q+1) = diag{ψ(q+1)
n }Nn=1 denotes the penalty weight matrix 286

and its element ψ(q+1)
n is computed as follows: 287

ψ(q+1)
n = σ

2 (q+1)
β γ

(q+1)
1n

+ 2σ2 (q+1)
G σ

2(q+1)
β

K∑

k=2

χ
(q+1)
kn γ

(q+1)
kn

σ
2 (q+1)
L;k

. (35)

The training process of the proposed MoGL-SCN is summa- 288

rized as follows. First, the initial hyperparameters are assigned, 289

and the SCN is built using the SC-III algorithm [8] to obtain 290

the random parameters and the initial output weights. Second, 291

the hyperparameters and the output weights are iteratively rees- 292

timated using the EM algorithm. The termination condition is 293

selected as follows: 294
∣∣∣∣∣
E[ln p(βββ(q+1)|TTT ,ΓΓΓ,ΣΣΣ, σ2

β)|DDD]

E[ln p(βββ(q)|TTT ,ΓΓΓ,ΣΣΣ, σ2
β)|DDD]

− 1

∣∣∣∣∣ < κ (36)

where κ equals a small positive number, which is set to 1e− 6 295

in this article. Based on the aforementioned description, the im- 296

plementation of the MoGL-SCN is summarized in Algorithm 1. 297

B. Construction of Prediction Intervals 298

The structure of PIs based on the proposed bootstrap en- 299

semble MoGL-SCNs is shown in Fig. 2. First, M subdatasets 300

DDDm = {(xxxm,i, ym,i)}Ni=1, where m = 1, . . . ,M , are uniformly 301

resampled from the original datasetDDD = {(xxxn, yn)}Nn=1. Then, 302

the point prediction value ŷ and the variance σ2
ŷ associated with 303

model mismatch are estimated by building M MoGL-SCNs 304

using the M subdatasets. 305

According to Fig. 2, it can be seen that the point prediction 306

value of the PI is estimated by the average of the prediction 307

outputs of the M MoGL-SCNs as 308

ŷ =
1
M

M∑

m=1

ŷm. (37)

As described in [28], the variance σ2
ŷ caused by the model 309

mismatch can be computed by the variance of the prediction 310
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Algorithm 1: MoGL-SCN.
Input: The dataset
DDD = {XXX,yyy} = {(xxxn, yn) ∈ Rd ×R}Nn=1.
Output: βββ,ΓΓΓ,ΣΣΣ and σ2

β .
1: Initialization: Set P as the maximum number of

hidden nodes of the SCN, Tmax as the maximum
configuration time, and eee0 as the error tolerance. Select
the scopes of input weights and biases of hidden nodes
Υ = [−λj , λj ]

J
j=1. Set K as the number of mixed

components. Initialize the parameters {ΓΓΓ,ΣΣΣ, σ2
β}.

2: Build the SCN using the SC-III proposed in [8].
3: Set the output weights obtained from step 1 as the

initial output weights of the MoGL-SCN.
4: while termination condition (36) is not reached do
5: Calculate ln p(βββ|TTT ,ΓΓΓ,ΣΣΣ, σ2

β) using (23).
6: E-step: calculate γ1n, γkn and χkn using (25)−(27).
7: M-step: update {βββ,ΓΓΓ,ΣΣΣ, σ2

β} using (29)−(35).
8: Renew the termination condition (36).
9: end while

10: Obtain the optimal {βββ,ΓΓΓ,ΣΣΣ, σ2
β} of the MoGL-SCN.

Fig. 2. Structure of the proposed BE-MoGL-SCN of constructing PIs.

outputs of the M MoGL-SCNs as311

σ2
ŷ =

1
M − 1

M∑

m=1

(ŷm − ŷ)2. (38)

In general, an extra (M + 1)th neural network is usually built312

to model the variance of noise [28]. However, in the proposed313

method, the variance of the uncertainty caused by the intrinsic314

noise is estimated by the hyperparameter ΣΣΣ, namely, for 1 ≤315

m ≤M , we can derive the following expression:316

σ2
ε;m = τ 2

1,mσ
2
G;m +

K∑

k=2

τ 2
k,mσ

2
L;k,m. (39)

Algorithm 2: Construction of PIs Using BE-MoGL-SCN.
Input: The training dataset and the testing input data xxx.
Output: ŷ, L(xxx) and U(xxx).
1: Initialization: Set M as the ensemble size and CL as

the predefined confidence level, and initialize the
parameters in Algorithm 1.

2: Generate M subdatasets from the training dataset
using the bootstrap method.

3: Build M base MoGL-SCNs based on Algorithm 1
(step 2−step 9).

4: Output βββ∗
1
, . . . ,βββ∗

M from the M base MoGL-SCNs
and the optimal hyperparameters.

5: Input the testing data xxx.
6: Compute ŷ, L(xxx) and U(xxx) using (37)−(40).

Then, according to the definition in [28] and [32], after ŷ, 317

σ2
ŷ, and σ2

ε;m are obtained, the PI with confidence level (CL) 318

(1 − α)% can be constructed as follows: 319

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(xxx) = ŷ − t1−α/2(M)

√√√√σ2
ŷ +

M∑

m=1

σ2
ε;m

U(xxx) = ŷ + t1−α/2(M)

√√√√σ2
ŷ +

M∑

m=1

σ2
ε;m

(40)

where t1−α/2(M) is the cumulative t-distribution with (1 − 320

α/2) quantiles and M degrees of freedom, and L(xxx) denotes 321

the lower bound and U(xxx) denotes the upper bound of the 322

constructed PI, respectively. 323

In accordance with the structure shown in Fig. 2 and the 324

aforementioned analysis, the implementation step of the PIs con- 325

structed by the BE-MoGL-SCN is summarized in Algorithm 2. 326

IV. CASE STUDIES ON BENCHMARK DATASETS 327

In this section, the effectiveness of the constructed PIs based 328

on the BE-MoGL-SCN is evaluated on two benchmark datasets 329

from KEEL:1 Friedman (DB1) and Treasury (DB2). 330

Three other state-of-the-art robust randomized neural net- 331

works: M-RVFL [16], RR-RVFL [17], and RSC-KDE [18], are 332

implemented in the bootstrap ensemble strategy to construct 333

PIs, termed BE-RR-RVFL, BE-M-RVFL, and BE-RSC-KDE, 334

respectively, and two novel ensemble neural network-based 335

methods of constructing PIs: the negative correlation-learning- 336

based ensemble RVFL (NCL-E-RVFL) [27] and the optimized 337

bootstrap method (OPT-Bootstrap) [33], are compared with the 338

proposed BE-MoGL-SCN. 339

All experiments are repeated 50 times and the average value 340

of the 50 experiments is reported. The root-mean-squared error 341

(RMSE) and Nash Sutcliffe coefficient (NSC) are adopted to 342

evaluate the prediction accuracy of each method, and a large 343

NSC indicates the high prediction accuracy. The prediction inter- 344

val coverage probability (PICP) and normalized mean prediction 345

1[Online]. Available: http://www.keel.es/.
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TABLE I
PERFORMANCE COMPARISON OF EACH METHOD ON NORMAL DATASET

interval width (NMPIW) [28], [32] are introduced to evaluate346

the performance of the PIs. The PIs with high quality should347

have the large PICP and small NMPIW.348

A. Parameter Setting349

In this article, each benchmark dataset is divided into three350

parts: 60% of the total samples are used as the training data,351

20% of the total samples are used as the validation data, and352

the remaining 20% are used as the testing data. The predefined353

confidence level is set toCL = (1 − α) = 90%, and the ensem-354

ble size of all methods is set to M = 30. The number of hidden355

nodes of the base MoGL-SCN in the ensemble is set to P = 40356

and P = 60 for DB1 and DB2, respectively. The input weights357

and biases are selected in range of [−λ, λ], where λ = 0.5, 1,358

and 3, based on the supervisory mechanism (5). The maximum359

random configuration time is set to Tmax = 200. The number of360

components K in the mixed distributions and the initial values361

of hyperparameters {ΓΓΓ,ΣΣΣ, σ2
β} are set to K = 3 (a mixture362

of one Gaussian and two Laplace distributions) and τ1 = 0.8,363

{τk}k=3
k=2 = 0.1, σ2

G = 0.15, {σL;k}k=3
k=2 = 0.1, and σ2

β = 0.15.364

All the aforementioned parameters are determined by the results365

on the validation dataset.366

B. Comparative Experiments367

Table I gives the prediction performance of all the methods368

on DB1 and DB2. The comparisons in Table I indicate that BE-369

MoGL-SCN has the smallest RMSE and largest NSC, which370

suggests that the prediction accuracy of the BE-MoGL-SCN371

is better than that of the other five methods on both DB1 and372

DB2 without adding noise. The PICP of the BE-MoGL-SCN is373

relatively small but still larger than the predefined CL = 90%,374

and the interval width is narrower than those of the other five375

methods on both DB1 and DB2. These results indicate that the376

PIs of the BE-MoGL-SCN are narrow but appropriate and can377

maintain an acceptable coverage probability.378

To demonstrate the robustness of the proposed method, we379

randomly select ξ%, where ξ = {10, 15, 20, 25, 30}, of the380

complete training dataset and add sparse random noise that is381

produced as y × rand(0, 1)× [−50%, 50%], where rand(0, 1)382

denotes a uniformly distributed number in (0,1). Figs. 3 and383

4 illustrate the variations in the average values and standard384

Fig. 3. Prediction performance of each method with different ξ on DB1.
(a) RMSE. (b) NSC. (c) PICP. (d) NMPIW.

Fig. 4. Prediction performance of each method with different ξ on DB2.
(a) RMSE. (b) NSC. (c) PICP. (d) NMPIW.

deviations of the RMSEs, NSCs, PICPs, and NMPIWs with 385

different ξ of each method on DB1 and DB2. As shown in Fig. 3, 386

the RMSE of the BE-MoGL-SCN is smaller than that of the other 387

five methods with respect to different ξ on DB1, and the NSC is 388

the largest among those of the six methods. This finding demon- 389

strates that BE-MoGL-SCN has better generalization capability 390

than the other models. Compared with the other five methods, 391

the BE-MoGL-SCN can maintain an acceptable PICP and small 392

NMPIW with increasing noise contamination rate ξ. Therefore, 393

the BE-MoGL-SCN can construct PIs with higher quality than 394
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those of the other five methods. For DB2, from the comparisons395

in Fig. 4, we can observe that BE-MoGL-SCN outperforms396

the other five methods in terms of the prediction accuracy as397

ξ increases and yields a reasonable PICP and small NMPIW.398

Compared with those of the other five methods, the PIs of the399

BE-MoGL-SCN are more effective. Moreover, we can see from400

Figs. 3 and 4 that the interval widths (NMPIWs) of the five com-401

parative methods are larger than that of the proposed method.402

Therefore, the cases that the PICPs of the proposed method403

are smaller than that of some other comparative methods can404

occur. The experimental results on the two benchmark datasets405

demonstrate the advantage of the proposed BE-MoGL-SCN.406

Remark 2: There is a direct relationship between the interval407

width and the coverage probability of the PIs. In general, a large408

NMPIW will lead to a high PICP, but the PIs with extremely409

large interval widths convey no information about the actual410

targets [9]. Hence, in the real-world applications, the optimal411

PIs should have small NMPIW, and the PICP should not be less412

than the predefined confidence level [28].413

V. PREDICTION OF ASPHALTENE IN CRUDE OIL414

In this section, a real-world dataset collected from a refinery415

is used to verify the performance of the proposed method.416

The real-world dataset was collected from the fast evaluation417

system for the physicochemical properties of crude oil in a refin-418

ery in China. The input features are nuclear magnetic resonance419

(NMR) hydrogen spectrum data xxx ∈ R700. As an important420

physicochemical property of crude oil, the asphaltene consists of421

highly concentrated poly aromatics, and these components often422

result in the blockage and corrosion of pipelines and equipments,423

which can lead to a significant decrease in production profits.424

Hence, the fast evaluation of asphaltene in crude oil is of great425

significance for increasing the economic benefits of refineries.426

Therefore, we select the asphaltene in crude oil as the modeling427

output. The dataset consists of 863 sets of NMR hydrogen428

spectrum data and the corresponding asphaltene content data429

collected between May 2016 and October 2017. However, the430

high dimensionality of NMR spectrum data will lead to the431

high computational cost, which severely affects the real-time432

application of the method. Principal component analysis (PCA)433

can effectively extract the features of the NMR spectra [36].434

Therefore, PCA is adopted to perform the dimensionality re-435

duction. First, the NMR spectrum data are normalized. Then,436

by using PCA, the principal components with a 99% cumulative437

percent variance contribution rate are chosen as the inputs.438

A. Parameter Selection439

In this experiment, the dataset is divided into three parts: the440

training dataset (743 groups), the validation dataset (50 groups),441

and the testing dataset (70 groups). The predefined CL is set442

to 95%, the bootstrap ensemble size of all methods is set to443

M = 25, and the number of hidden nodes of the base MoGL-444

SCN in the ensemble is set to P = 60. The random parameters445

of the MoGL-SCN are automatically assigned in the range of446

[−λ, λ], where λ = 0.2, 0.5, 1, 3, and 5. The random configura-447

tion time is set to 200. The number of mixed components is set448

Fig. 5. PIs and point prediction of each method on the normal dataset.
(a) BE-MoGL-SCN. (b) BE-RSC-KDE. (c) BE-M-RVFL. (d) BE-RR-
RVFL. (e) NCL-E-RFVL. (f) OPT-Bootstrap.

to K = 4, with one Gaussian and three Laplace distributions. 449

The initial values of the hyperparameters {ΓΓΓ,ΣΣΣ, σ2
β} are set 450

to τ1 = 0.7, {τk}k=4
k=2 = 0.1, σ2

G = 0.2, {σL;k}k=4
k=2 = 0.1, and 451

σ2
β = 0.15, respectively. All the aforementioned parameters are 452

determined from results on validation dataset. 453

B. Comparison and Discussion 454

The constructed PIs and the point prediction results of the 455

BE-MoGL-SCN and the other five comparative methods on the 456

normal dataset are shown in Fig. 5. As shown in Fig. 5, one 457

can see that the point prediction outputs of the BE-MoGL-SCN 458

can fit the actual data better than can the outputs of the other 459

five models, hence, the proposed method has small prediction 460

errors, high prediction accuracy, and satisfactory generalization 461

capability on the normal dataset. Furthermore, the constructed 462

PIs of the BE-MoGL-SCN have a small interval width and 463

acceptable PICP, which is larger than the predefined confidence 464

level (95%), so the constructed PIs are suitable for the decision- 465

making processes in crude oil refining. 466

To better illustrate the superiority of the BE-MoGL-SCN, 467

the scatter diagram of the point prediction results and the PDF 468
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Fig. 6. Point prediction results of each method. (a) Scatter diagram of
the point prediction. (b) PDF of the prediction errors.

TABLE II
PERFORMANCE COMPARISON ON NORMAL DATASET

of the prediction errors of each method on the normal dataset469

are shown in Fig. 6, and the average values of the RMSEs,470

NSCs, PICPs, and NMPIWs of the BE-MoGL-SCN and the471

other five methods on the normal dataset are listed in Table II.472

As shown in Fig. 6(a), we can see that compared with the other473

five comparative algorithms, the point prediction results of the474

BE-MoGL-SCN are much closer to the actual targets. According475

to Fig. 6(b), one can see that the PDF of prediction errors of the476

BE-MoGL-SCN emerges a narrower spiking shape around zero.477

This indicates that from the perspective of probability, the mean478

value of the prediction errors of the BE-MoGL-SCN is zero. It479

can also be seen from Table II that the BE-MoGL-SCN has the480

smallest RMSE and the largest NSC. It can be concluded that481

compared with the other methods, the proposed BE-MoGL-SCN482

yields better prediction accuracy. And it also shows that the PICP483

of the BE-MoGL-SCN is smaller than that of the BE-M-RVFL,484

NCL-E-RFVL, and OPT-Bootstrap but larger than the prede-485

fined confidence level (95%), and the NMPIW is narrower than486

that of the other five methods, confirming that the PIs constructed487

by the BE-MoGL-SCN can reflect the important information488

associated with the actual targets.489

The computational efficiency including the averages and stan-490

dard deviations of the training time and testing time of each491

method is given in Table III. It is shown in Table III that the in-492

cremental approach for building SCNs and the stochastic config-493

uration process of random parameters slow the training process494

of SCNs, so the training times of the BE-MoGL-SCN and BE-495

RSC-KDE are longer than those of the BE-RR-RFVL, BE-M-496

RFVL, and NCL-E-RFVL. And the evolutionary optimization497

algorithm is implemented in the OPT-Bootstrap method, which498

results in the most expensive computational cost. The testing499

time of the BE-MoGL-SCN is slightly longer than that of the500

other five methods but still acceptable.501

TABLE III
COMPUTATIONAL EFFICIENCY COMPARISON OF EACH METHOD

Fig. 7. Prediction performance of each method with different ξ.
(a) RMSE. (b) NSC. (c) PICP. (d) NMPIW.

To evaluate the robustness of the proposed BE-MoGL-SCN 502

with respect to different noise contamination rates, sparse ran- 503

dom noise, which is generated in a manner similar to that 504

in the previous experiment in Section IV, is introduced into 505

the training data. The variations in the RMSEs, NSCs, PICPs, 506

and NMPIWs of each method with respect to different ξ (ξ = 507

10, 15, 20, 25, 30) are depicted in Fig. 7. According to the com- 508

parisons of the RMSE and NSC shown in Fig. 7, as ξ increases, 509

the RMSE of the BE-MoGL-SCN slightly increases and the 510

NSC slightly decreases, so the BE-MoGL-SCN can maintain 511

a high prediction accuracy, suggesting that BE-MoGL-SCN is 512

minimally affected by noise. The prediction accuracy of the 513

other five methods rapidly decreases in comparison. Moreover, 514

as ξ increases, the PICPs of all methods are still larger than 515

CL = 95%. The PICP of the BE-MoGL-SCN is significantly 516

larger than that of BE-RSC-KDE and OPT-Bootstrap. And the 517

NMPIW of the BE-MoGL-SCN is smaller than that of the other 518

five comparative methods. Therefore, the BE-MoGL-SCN is 519

superior to the other five methods in terms of robustness with 520

respect to different noise contamination rates. 521

In reality, for the real-world applications, we usually care 522

about the worst-case performance instead of the statistical aver- 523

age. Therefore, we report the corresponding worst results of the 524

50 experiments of each method with respect to different noise 525
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TABLE IV
WORST-CASE PERFORMANCE OF EACH METHOD WITH DIFFERENT ξ

contamination rate (ξ) in Table IV. As given in Table IV, on526

both the normal dataset (ξ = 0) and the dataset with introduced527

noise, the worst prediction accuracy of the BE-MoGL-SCN is528

better than that of the other five methods, and the interval width529

of the BE-MoGL-SCN is narrower than that of the other five530

methods, except in the case of ξ = 20. Besides, the coverage531

probability of the BE-MoGL-SCN is greater than that of the532

other five methods, except in the case of ξ = 25. Therefore,533

we can conclude that the proposed method can construct PIs534

with high quality and effectively eliminate the effect of noise or535

outliers on the modeling performance.536

VI. CONCLUSION537

This article presented a novel robust SCN based on a mixture538

of the Gaussian and Laplace distributions to solve the low539

prediction accuracy problem associated with the presence of540

noise or outliers with unknown distributions in the real-world541

data. Moreover, the parameter solution process based on the542

EM algorithm of the proposed robust SCN was derived. Further-543

more, the bootstrap ensemble strategy was adopted to construct544

the PIs and quantify the uncertainties caused by both model545

mismatch and noise in the real-world data, and the proposed 546

robust SCN was applied as the base component in the ensemble. 547

The proposed method of constructing PIs was tested on two 548

benchmark datasets and a real-world dataset collected from a 549

refinery. Compared with other methods, the proposed method 550

could construct PIs with higher reliability and prediction accu- 551

racy and could also guarantee high computational efficiency. 552

In additional, the experimental results demonstrated that the 553

proposed method exhibits excellent robustness with respect to 554

different noise contamination rates. The experimental results 555

using the real-world dataset suggested that the proposed method 556

was suitable for applications in the refinery. 557

It was worth noting that the missing data phenomenon was 558

also a common issue that was frequently present in the real-world 559

applications, and the large number of irregularly missing data 560

could result in biased estimation of model parameters that may 561

cause the uncertainty of the prediction result [2]. In this article, 562

we mainly considered the uncertainty related to the prediction 563

results of the model when dealing with the real-world data 564

contaminated with noise or outliers. The issue of missing data 565

was not taken into account in the proposed method. But, in 566

the future, one can attempt to address the issue of missing 567

data by applying the proposed method of constructing PIs with 568

semisupervised techniques and imputation-based methods. 569
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