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Abstract— Obtaining accurate point prediction of industrial
processes’ key variables is challenging due to the outliers and
noise that are common in industrial data. Hence the predic-
tion intervals (PIs) have been widely adopted to quantify the
uncertainty related to the point prediction. In order to improve
the prediction accuracy and quantify the level of uncertainty
associated with the point prediction, this article estimates the
PIs by using ensemble stochastic configuration networks (SCNs)
and bootstrap method. The estimated PIs can guarantee both the
modeling stability and computational efficiency. To encourage the
cooperation among the base SCNs and improve the robustness
of the ensemble SCNs when the training data are contaminated
with noise and outliers, a simultaneous robust training method
of the ensemble SCNs is developed based on the Bayesian ridge
regression and M-estimate. Moreover, the hyperparameters of
the assumed distributions over noise and output weights of the
ensemble SCNs are estimated by the expectation–maximization
(EM) algorithm, which can result in the optimal PIs and better
prediction accuracy. Finally, the performance of the proposed
approach is evaluated on three benchmark data sets and a
real-world data set collected from a refinery. The experimental
results demonstrate that the proposed approach exhibits better
performance in terms of the quality of PIs, prediction accuracy,
and robustness.

Index Terms— Bayesian ridge regression, bootstrap, ensemble
stochastic configuration networks, M-estimate, prediction inter-
vals, simultaneous robust training.

I. INTRODUCTION

ACCURATE prediction of key variables of industrial
processes is critical for managers and engineers to make

the right decisions to optimize manufacturing and production.
At present, the commonly used modeling methods to predict
these key variables are mostly based on point prediction.
These point-prediction-based methods only provide potential
varying trends of key variables to managers and engineers
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for decision-making. However, the performance of point
prediction degrades significantly when noise and outliers
presented in the observed data set. Unfortunately, the industrial
data usually contain outliers due to the measurement errors
and human mistakes, which would decrease the prediction
accuracy [1]. Moreover, the point-prediction-based method
does not provide any indication of the prediction accuracy and
cannot characterize the reliability of the prediction results [2].
In the actual decision-making process, the uncertainty related
to the point prediction should be taken into account [3].

In recent years, the prediction interval (PI) has received
more and more attention due to its advantage of providing
both the point prediction and the corresponding potential
uncertainty together. The essence of PIs is an estimate of
an interval in which a future value of the expected output
variable will fall with a certain confidence level (CL) [4]. The
common algorithms of estimating PIs include the Bayesian [5],
bootstrap [6], delta [7], mean–variance estimation (MVE) [8],
and the lower–upper bound estimation (LUBE) [9]. The LUBE
method does not need assumption on the data distribution [10].
However, the evolutionary algorithms that are adopted to
train the neural networks are time-consuming. In addition,
the LUBE-based PIs cannot provide point prediction
value [11]. In the delta technique, the noise is assumed to be
homogeneous, which is not true in numerous real-world appli-
cations [3]. The Bayesian method uses Bayes’ theory to train
the neural networks, which can avoid overfitting [12], [13],
however, it suffers from low prediction accuracy with small
sample size. The performance of the Bayesian method relies
on prior knowledge. Although the MVE technique requires
less computational cost, it only considers the errors caused
by the noise without taking the error caused by the model
mismatch into account. Hence, in real-world applications,
it will result in unreliable PIs. All the aforementioned
Bayesian, delta, and MVE are single-neural network-based
methods and their quality of PIs and the accuracy of point
prediction are limited. Hence, it is difficult to give guarantee
of modeling stability of these methods.

It is well known that PIs based on ensemble neural
networks and bootstrap method are good at solving the above-
mentioned problems, and it is also worth studying these
problems by using the ensemble neural networks and boot-
strap. Furthermore, the bootstrap method can also reduce the
influence of randomness caused by neural networks [14], [15].
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The bootstrap method has the advantage of easy implemen-
tation and simple calculation; therefore, it has been success-
fully applied in the fields of wind-power-generation forecasts
[16], [17], traffic noise estimation [18], electricity price pre-
diction [19], and so on. However, the drawback of bootstrap
method is also obvious, namely, the high computational cost
when processing large data sets due to the complex ensem-
ble and the slow training process of backpropagation neural
networks (BPNNs) [20]. In addition, the effectiveness of the
ensemble neural networks used in bootstrap is influenced by
the base neural network in the ensemble, and it is critical for
the training method to consider the performance of base neural
networks [21]. There are three approaches to training ensemble
neural networks: sequential training, independent training, and
simultaneous training [22]. In the original bootstrap method of
estimating PIs, all the base neural networks in the ensemble
are trained independently because of the simplicity and ease
of implementation of the independent training. However, this
approach seriously limits the performance of the ensemble
neural networks since the base neural networks are trained
independently. As reported in the literature, simultaneous
training is the most effective method of training the ensem-
ble neural networks, owing to that the parameters of all
the base neural networks are adjusted simultaneously and
cooperate with each other [23]–[25]. Due to the low com-
putational efficiency and the complex training process, there
are few simultaneous training methods of the bootstrap-based
ensemble neural networks. Latterly, some improved bootstrap
methods have been studied. One example is the relevance
vector machine that is introduced as the base components and
trained by a parallel algorithm [26]. However, the essence of
parallel algorithm is to use computer hardware to accelerate
the training process, instead of training the base components
in the ensemble simultaneously. Recently, the stochastic con-
figuration networks (SCNs) have demonstrated excellent per-
formance in the field of data modeling because of the universal
approximation property [27], [28]. Compared with traditional
neural networks, the simple structure and fast learning speed
of SCNs can reduce the computational cost [27]. Therefore,
SCN is a suitable candidate for estimating PIs based on the
bootstrap and ensemble neural networks.

Moreover, in real-world applications, the data collected from
the industrial processes are almost contaminated with outliers
due to adverse interferences and noise [29], [30]. When the
outliers presented in the training data, the aforementioned
methods are not robust, which would lead to questionable PIs
with low prediction accuracy. Therefore, it is extremely useful
to develop robust methods which are insensitive to noise and
outliers for estimating PIs.

In order to address the challenges of slow convergence of
traditional BPNNs, the low accuracy of single-neural network-
based PIs, and the high computation costs of original bootstrap
methods, the PIs based on the ensemble SCNs and bootstrap
method are proposed in this article, which aims at quantifying
the reliability and potential uncertainty associated with the
point prediction and ensuring the computational efficiency.
To improve robustness of the proposed algorithm and encour-
age the cooperation among the base SCNs, the simultaneous

robust training method based on the Bayesian ridge regression
and M-estimate is developed. Meanwhile, the hyperparameters
of the assumed distributions are estimated by the expectation-
maximization (EM) algorithm. To examine the performance of
the estimated PIs, experiments are carried out based on three
benchmark data sets and a real-world data set collected from a
refinery. The experimental results demonstrate the superiority
of the proposed method of estimating PIs.

The rest of this article is organized as follows. Section II
briefly introduces the bootstrap-method-based PIs and SCNs.
Section III presents the proposed method of estimating PIs
based on the bootstrap method and ensemble SCNs. The
simultaneous robust training method based on the Bayesian
ridge regression and M-estimate is also described in detail.
EM-algorithm-based hyperparameters optimization is also
given in Section III. Section IV presents the experimental
results on three benchmark data sets and a real-world data
set collected from a refinery. This article is concluded
in Section V.

II. PRELIMINARIES

This section briefly introduces the bootstrap-method-based
PIs and the SCNs.

A. Estimation of PIs by Bootstrap Method and
Ensemble Neural Networks

In regression tasks, the relation between the output variable
y and the input variable xxx can be represented as follows:

y = t + ε = f (xxx, θ)+ ε (1)

where y is the observed value, t is the actual value, and
f (xxx, θ), which is parameterized by θ , denotes the true map-
ping relation between the input variable and the output vari-
able. Generally, ε is assumed to be of the Gaussian random
noise with a zero expectation and variance σ 2

ε [24]. ε leads to
the deviation of the observed value y from the actual value t .

If the neural network is used to build the prediction model,
then the prediction output ŷ of a trained neural network is an
estimation of f (xxx, θ)

ŷ = f̂ (xxx, ϑ) (2)

where ϑ denotes the parameters of neural network.
Then, the prediction error can be computed as follows:

y − ŷ = t − ŷ + ε = [ f (xxx, θ)− f̂ (xxx, ϑ)] + ε. (3)

Suppose that (t − ŷ) and ε, i.e., the two items on the
right-hand side of (3) are independent, the variance σ 2

y of the
prediction value can be expressed as follows [15]:

σ 2
y = σ 2

ŷ + σ 2
ε (4)

where σ 2
ŷ denotes the variance caused by model mismatch.

Bootstrap is a data resampling method based on statistical
inference and has been widely used to estimate PIs [6]. In the
bootstrap method, K subsample data sets Dk = {(xxxn

k , yn
k ), n =

1, . . . , N}, k = 1, . . . , K , are uniformly resampled with
replacement from the original data set D = {(xxxi , yi )}N

i=1.
Bootstrap method calculates the prediction result and the

Authorized licensed use limited to: Northeastern University. Downloaded on April 09,2020 at 03:22:09 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LU et al.: ENSEMBLE SCNs FOR ESTIMATING PIs: SIMULTANEOUS ROBUST TRAINING ALGORITHM AND ITS APPLICATION 3

Fig. 1. Structure of PIs based on bootstrap and ensemble neural networks.

variance σ 2
ŷ of model mismatch by building K neural networks

using the K subsample data. The structure of PIs based on
ensemble neural networks and bootstrap is shown in Fig. 1.

According to Fig. 1, it can be seen that for the input
variable xxx , the corresponding prediction ŷ is the average of
prediction outputs of the K neural networks as follows:

ŷ = 1

K

K∑
k=1

ŷk . (5)

If the prediction of a trained neural network is assumed
to be unbiased, the variance σ 2

ŷ caused by model mismatch
can be computed by the variance of outputs of the K neural
networks [15] as follows:

σ 2
ŷ = 1

K − 1

K∑
k=1

(ŷk − ŷ)2. (6)

In general, an extra (K + 1)th neural network is usually
trained by another data set, as shown in Fig. 1, to model the
variance σ 2

ε of the random noise, and the details refer to [15].
Once ŷ, σ 2

ŷ , and σ 2
ε are obtained, the PI with (1 − α)% CL,

which is denoted by CL = (1 − α)%, can be estimated [15][
ŷ − t1−α/2(K )

√
σ 2

ŷ + σ 2
ε , ŷ + t1−α/2(K )

√
σ 2

ŷ + σ 2
ε

]
(7)

where t1−α/2(K ) is the t-distribution with (1 − α/2) quantile
and K degrees of freedom.

B. Stochastic Configuration Networks

SCN [27] is the most advanced constructive single-hidden-
layer feedforward neural network. Its input weights and hidden
layer biases are randomly generated in a varying uniform
distribution symmetric scope [−μ,μ], μ > 0. Then, these
randomly generated parameters are selected in light of a
supervisory mechanism [27]. The structure of SCN used in
this article is the same as the random vector functional link
networks (RVFLs) [31], namely, the input layer is directly
connected to the output layer. Given a data set D = (xxx, yyy) =
{(xxxi , yi ) ∈ Rd × R}N

i=1, the output vector of the SCN with
L − 1 hidden nodes can be written as follows:

OOO L−1(xxx;βββ) = HHH (xxx)βββ (8)

where L = 1, 2, . . . , and HHH(xxx) denotes a matrix combining
the input data of d dimensionalities with the output matrix
of hidden layer, which is abbreviated to HHH in the rest of this
article. It can be written as follows:⎧⎪⎨

⎪⎩
HHH = [hhhT (xxx1), . . . ,hhhT (xxxi ), . . . ,hhhT (xxx N )]T

hhh(xxxi ) = [
xxxi1, . . . , xxxid , g1

(
wwwT

1 · xxxi + b1
)

. . . , gL−1
(
wwwT

L−1 · xxxi + bL−1
)] (9)

βββ = [β1, . . . , βL−1+d ]T denote the output weights, and
wwwl ∈ Rd and bl ∈ R, l = 1, . . . , L − 1, denote the input
weights and the hidden layer bias of the lth hidden node,
respectively. g(·) is the activation function, and a commonly
used activation function is the sigmoid function g(x) = 1/(1+
exp(−x)). The superscript T denotes the matrix transpose.

The output weights βββ can be computed by the least-squares
algorithm [27], [28]

βββ∗ = arg min
βββ

1

2
‖yyy − HHHβββ‖2

2 = (HHH T HHH )−1HHH T yyy (10)

where‖ · ‖2 denotes the Euclidean norm and yyy =
[y1, . . . , yN ]T is the vector of output variable.

When the SCN does not reach the predefined terminating
conditions, a new hidden node is generated. The output matrix
of the newly added Lth hidden node is written as follows:

GGGL = [
gL

(
wwwT

L · xxx1 + bL
)
, . . . , gL

(
wwwT

L · xxx N + bL
)]T
. (11)

According to the theorem of SCNs proposed in [27], the ran-
domly generated parameters (wwwL and bL) should be subject to
the following supervisory mechanism to ensure the universal
approximation property of SCNs:

ζ =
〈
eeeT

L−1,GGGL
〉2〈

GGGT
L ,GGGL

〉 − (1 − r − γL)× 〈
eeeT

L−1,eeeL−1
〉
> 0 (12)

where eeeL−1 = yyy − HHHβββ∗ denotes the vector of training errors
of SCN with L − 1 hidden nodes, 0 < r < 1, 0 < γL < 1 − r ,
limL→∞γL = 0, and 〈·, ·〉 denotes the scalar product.

The output matrix of the hidden layer of the SCN is
[HHH ,GGGL ], and the output weights βββ are evaluated by using (10).
The generation of new hidden nodes continues until some
predefined terminating conditions are reached, and the random
parameters (www and b) of the new hidden node are determined
based on the supervisory mechanism (12). More details about
the SCNs can be found in [27].

Remark 1: According to the algorithms of SCNs described
in [27] and [28], one should notice that Tmax new hidden nodes
{g1

L(www
1
L , b1

L), . . . , gTmax
L (wwwTmax

L , bTmax
L )} are produced, and their

random parameters (wwwL and bL) are generated in the varying
range [−μ j , μ j ], j = 1, . . . , J . The hidden nodes that
satisfy the supervisory mechanism ζ > 0 are selected as the
candidates, and finally, the node with the largest ζ is chosen
as the newly added one.

III. SIMULTANEOUS ROBUST TRAINING OF BOOTSTRAP

ENSEMBLE SCNs FOR ESTIMATION OF PIs

This section begins with an introduction to the proposed
approach of estimating PIs. Then, a simultaneous robust
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Fig. 2. Structure of the proposed method of estimating PIs.

training algorithm of ensemble SCNs based on the Bayesian
ridge regression and M-estimate is described in detail, and the
EM-algorithm-based hyperparameter estimation is derived.
Finally, the estimated PIs are given.

A. Proposed Approach of Estimating PIs

According to the previous analysis, it can be found that in
the bootstrap and ensemble neural networks for PI estimation,
the base neural networks are trained independently. This
is because of the high computational cost of simultaneous
training for the ensemble. While in the training stage of
SCNs, once the configuration process completed, the input
weights and hidden layer biases are fixed, and only the output
weights need to be updated. This strategy can be used to
mitigate the problem of high computational cost. However,
in real-world applications, since the output weights of SCNs
are computed by the least-squares method, such a method
may suffer from overfitting as well as noise and outliers
sensitive [30]. It is known that the Bayesian-framework-based
training approach can effectively improve the generalization
capability of neural networks and avoid overfitting [12]. Unfor-
tunately, traditional Bayesian method is not robust to noise
and outliers. In order to address this issue, a training method
based on the M-estimate and Bayesian framework is proposed
to improve the robustness.

In addition, under some assumptions, the Bayesian frame-
work can also automatically infer the hyperparameters of
the distributions of the random noise and output weights of
the ensemble SCNs. Considering the aforementioned advan-
tages, this article proposes a method of estimating PIs based
on the bootstrap method and ensemble SCNs. Meanwhile,
the simultaneous robust training approach of the ensemble
SCNs is developed by using the Bayesian ridge regression
and M-estimate. The structure of the proposed method of
estimating PIs is shown in Fig. 2.

According to Fig. 2, it can be seen that K subdata sets are
produced by using the bootstrap method, and K base SCNs
are generated based on the K subdata sets. Then, the ensemble

SCNs with size K is built based on the proposed simultaneous
robust training method, and the hyperparameters are estimated
by the EM algorithm. The prediction value and the variance
caused by model mismatch are calculated by using (5) and (6).
Finally, by combining the variance of model mismatch and
the variance of noise, which is inferred by the Bayesian
framework, the PIs can be estimated by (7).

B. Simultaneous Robust Training for Bootstrap Ensemble
SCNs Based on the Bayesian Ridge Regression
and M-Estimate

Given an original data set D = {(xxxi , yi ) ∈ Rd × R}N
i=1, K

subtraining data sets {Dk}K
k=1 can be obtained by resampling

from D, where Dk = (XXX k, yyyk) = {(xxxn
k , yn

k )}N
n=1. The process

of building bootstrap ensemble SCNs is divided into two steps.
1) Based on the K subtraining data sets, K base SCNs with

the same structure are built independently by using the
SC-III algorithm proposed in [27].

2) The input weights and biases of the base SCN built in the
first step are kept fixed; only the output weights of the
ensemble SCNs are retrained in light of the ensemble
strategy.

According to the solution process of SCN described in
Section II-B and the above-mentioned discussion on the
ensemble SCNs, one can see that the training process of
ensemble SCNs is equivalent to solving a large-scale linear
regression problem. Therefore, the ensemble SCNs can be built
based on the proposed simultaneous robust training method.
For the kth SCN in the ensemble and the nth sample in the
subtraining data set Dk , we can derive that

yn
k = ŷn

k + εn
k = hhh

(
xxxn

k

)
βββk + εn

k (13)

where εn
k ∼ N (0, σ 2

ε ), N (·) denotes the Gaussian distribution,
and βββk = [β1

k , . . . , β
L+d
k ]T are the output weights of the kth

SCN with L hidden nodes.
Then, the probability density function (PDF) of the observed

output variable can be written as follows:

p
(
yn

k |xxxn
k ,βββk, σ

2
ε

)
= N (

yn
k |hhh(xxxn

k )βββk, σ
2
ε

)
= 1√

2πσ 2
ε

exp

{
−

(
yn

k − hhh
(
xxxn

k

)
βββk

)2

2σ 2
ε

}
. (14)

Generally speaking, all the observed samples are considered
to be independent identically distributed (i.i.d.); thus, we can
obtain the following likelihood function:

p(YYY |XXX ,βββ, σ 2
ε )

= p
(
yyy1, . . . , yyy K |XXX1, . . . , XXX K ,βββ, σ

2
ε

)
=

K∏
k=1

N∏
n=1

p
(
yn

k |xxxn
k ,βββk, σ

2
ε

)

= 1

(
√

2πσ 2
ε )

K×N

· exp

{
−

K∑
k=1

N∑
n=1

(
yn

k − hhh(xxxn
k )βββk

)2

2σ 2
ε

}
(15)
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where XXX = [XXX T
1 , XXX T

2 , . . . , XXX T
K ]T , YYY = [yyyT

1 , yyyT
2 , . . . , yyyT

K ]T ,

and βββ = [βββT
1
,βββT

2
, . . . ,βββT

K ]T .

In general, if we have little prior knowledge about the output
weights of the ensemble neural networks, then the prior of the
output weights is assumed to be of the Gaussian distribution
with a large variance, and the output weights of each neural
networks are assumed to be independent [24]. Accordingly,
the output weights of the ensemble SCNs are also assumed to
follow the Gaussian distribution, and then, the prior of βββ of
the ensemble SCNs can be formulated as follows:

p
(
βββ|σ 2

β

)
= p

(
βββ1, . . . ,βββK |σ 2

β

)
=

K∏
k=1

p
(
βββk |σ 2

β

)

=
K∏

k=1

1(√
2πσ 2

β

)L+d
exp

{
− 1

2σ 2
β

‖βββk‖2
2

}

= 1(√
2πσ 2

β

)K×(L+d)
exp

{
− 1

2σ 2
β

K∑
k=1

‖βββk‖2
2

}
. (16)

Remark 2: In the process of building bootstrap ensemble
SCNs, the input weights and biases of all the base SCNs
are randomly generated based on the supervisory mechanism
proposed in [27] and kept fixed. Therefore, the training process
of bootstrap ensemble SCNs is equivalent to solving a large-
scale linear system that can be mathematically described as
Hβββ = YYY , where H = blkdiag[HHH1, . . . ,HHH K ] and blkdiag[·]
represents the operator of constructing block diagonal matrix.
Since the input weights and biases are kept fixed, accordingly,
H is a constant matrix. Therefore, there is a linear mapping
relation between βββ and YYY . Consequently, according to the
rule of transformations of continuous probability densities
described in [32], the PDFs of βββ and YYY are related by the
following expression:

fβββ(β) = | det(H)| · fYYY (Hβ) (17)

where fβββ(·) and fYYY (·) are the PDFs of βββ and YYY , respec-
tively. det(·) denotes the determinant. Since the observed
variable YYY is assumed to be i.i.d. and follows the Gaussian
distribution, according to (17) and linear algebra calculations,
it can be concluded that βββ1, . . . ,βββK are independent of each
other.

Based on Bayes’ theorem, if the likelihood function and the
prior are known, for the kth SCN and Dk , the posterior of βββk

can be written as follows:

p
(
βββk|yyyk, XXX k, σ

2
ε , σ

2
β

) = p
(
yyyk |XXX k,βββk, σ

2
ε

)
p
(
βββk |σ 2

β

)
p
(
yyyk |XXXk, σ 2

ε , σ
2
β

) (18)

where p(yyyk |XXX k, σ
2
ε , σ

2
β ) is the marginal likelihood also viewed

as the normalization constant

p
(
yyyk |XXXk, σ

2
ε , σ

2
β

) =
∫

p
(
yyyk |XXXk,βββk, σ

2
ε

)
p
(
βββk |σ 2

β

)
dβββk . (19)

According to the conclusion described in [33], the posterior
of βββk is still Gaussian

p
(
βββk |yyyk, XXX k, σ

2
ε , σ

2
β

) = N
(

1

σ 2
ε

���k HHH T
k yyyk,���k

)
(20)

where yyyk = [y1
k , . . . , y N

k ]T , HHHk = [hhhT (xxx1
k), . . . ,hhh

T (xxx N
k )]T ,

and

���−1
k = 1

σ 2
ε

HHH T
k HHHk + 1

σ 2
β

III . (21)

For the ensemble SCNs and the total training data sets
{D1, D2, . . . , DK }, according to Bayes’ theorem, we can
obtain the posterior of βββ of the ensemble SCNs

p
(
βββ|YYY , XXX , σ 2

ε , σ
2
β

) = p
(
YYY |XXX ,βββ, σ 2

ε

)
p
(
βββ|σ 2

β

)
p
(
YYY |XXX , σ 2

ε , σ
2
β

) (22)

where p(YYY |XXX , σ 2
ε , σ

2
β ) is the marginal likelihood, which is

defined as the same as p(yyyk |XXX k, σ
2
ε , σ

2
β ). Then, we can rewrite

the posterior of βββ of the ensemble SCNs as follows:

p
(
βββ|YYY , XXX , σ 2

ε , σ
2
β

)
∝ p

(
YYY |XXX ,βββ, σ 2

ε

)
p
(
βββ|σ 2

β

)
∝ 1(√

2πσ 2
ε

)K×N (√
2πσ 2

β

)K×(L+d)

· exp

{
− 1

2σ 2
ε

K∑
k=1

N∑
n=1

(
yn

k − hhh
(
xxxn

k

)
βββk

)2

− 1

2σ 2
β

K∑
k=1

‖βββk‖2
2

}
(23)

where a ∝ b denotes that a is proportionate to b. For the
convenience of calculation, we generally take the logarithm
of the posterior of output weights of the ensemble SCNs, and
it can be written as follows:

ln p
(
βββ|YYY , XXX , σ 2

ε , σ
2
β

)
= − 1

2σ 2
ε

K∑
k=1

N∑
n=1

(
yn

k − hhh
(
xxxn

k

)
βββk

)2

− 1

2σ 2
β

K∑
k=1

‖βββk‖2
2 + c

= − 1

2σ 2
ε

K∑
k=1

‖yyyk − HHHkβββk‖2
2 − 1

2σ 2
β

K∑
k=1

‖βββk‖2
2 + c

= − 1

2σ 2
ε

‖YYY − Hβββ‖2
2 − 1

2σ 2
β

‖βββ‖2
2 + c (24)

where c denotes a constant which is independent of βββ.
Subsequently, the output weights βββ∗ of the ensemble SCNs

can be obtained by maximizing the logarithm of the posterior
distribution (24), which is also called the maximum a poste-
riori (MAP) estimation

βββ∗ = arg max
βββ∈RK×(L+d)

{
ln p

(
βββ|YYY , XXX , σ 2

ε , σ
2
β

)}

= arg min
βββ∈RK×(L+d)

{
1

2σ 2
ε

‖YYY − Hβββ‖2
2 + 1

2σ 2
β

‖βββ‖2
2

}
. (25)
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Since the noise in (13) is assumed to be of the Gaussian dis-
tribution, the above-mentioned MAP estimation is equivalent
to the regularized least-squares method with the regularization
coefficient λ = σ 2

ε /σ
2
β [13]

βββ∗ = [
H

T
H + (

σ 2
ε /σ

2
β

)
III
]−1

H
T YYY . (26)

It is well known that the neural networks obtained by the
regularized least-squares algorithm are not robust to noise and
outliers [29]. However, there are always noise and outliers in
the real-world industrial data. The M-estimate is a most popu-
lar robust estimation method [34]. Therefore, by combining the
Bayesian ridge regression and M-estimate, the robust ensemble
SCNs is proposed in this article, and the corresponding cost
function is given by

T (βββ) =
K∑

k=1

N∑
n=1

ρ

(
yn

k − hhh
(
xxxn

k

)
βββk

s

)
+ σ 2

ε

2σ 2
β

K∑
k=1

‖βββk‖2
2 (27)

where ρ(·) denotes the function of robust criterion and
s = 1.4826 × medk,n(|rn

k − medk,n(rn
k )|) denotes the robust

scale estimator [29], [34]. Here, med(·) denotes the median
operator, and rn

k = yn
k − hhh(xxxn

k )βββk is the residual error of the
nth sample in the kth subsample data set.

Then, we can calculate the output weights of the ensemble
SCNs by solving the following optimization problem:
βββ∗ = arg min

βββ∈RK×(L+d)
T (βββ)

= arg min
βββ∈RK×(L+d)

K∑
k=1

N∑
n=1

ρ

(
rn

k

s

)
+ σ 2

ε

2σ 2
β

K∑
k=1

‖βββk‖2
2. (28)

Let ∂T (βββ)/∂βββk = 0, we can obtain

−1

s

K∑
k=1

N∑
n=1

hhhT (
xxxn

k

)
ψ

(
rn

k /s
) + σ 2

ε

σ 2
β

K∑
k=1

βββk

= − 1

s2

K∑
k=1

N∑
n=1

hhhT (
xxxn

k

)
w

(
rn

k /s
)

× rn
k + σ 2

ε

σ 2
β

K∑
k=1

βββk = 0 (29)

where {
ψ

(
rn

k /s
) �= ρ′(rn

k /s
)

w
(
rn

k /s
) �= ψ

(
rn

k /s
)
/
(
rn

k /s
)
.

(30)

The selection of ρ(·) should guarantee that the ψ(·) is an
odd function and ψ(x) ≥ 0 for x ≥ 0 [34]. The Cauchy
function ρ(x) = (σ 2/2) ln(1 + (x/σ)2) is selected in this
article, where σ = 2.3849 is suggested in [35].

For the ensemble SCNs, (29) can be written in matrix form[
H

T WWWH + s2(σ 2
ε /σ

2
β

)
III
]
βββ = H

T WWWYYY (31)

where WWW = diag{w(rn
k /s)}n=1:N

k=1:K is the weight matrix and
diag{·} is the operator of constructing diagonal matrix.

Then, the iterative formula of output weights βββ(m+1) of the
ensemble SCNs can be calculated by the iteratively reweighted
regularized least-squares

βββ(m+1) = [
H

T WWW (m)
H + s2(σ 2

ε /σ
2
β

)
III
]−1

H
T WWW (m)YYY (32)

where m denotes the number of iterations.

The terminating condition of the iterative process is selected
as ||βββ(m+1) −βββ(m)|| < κ , where κ is a small positive number.

In accordance with the above-mentioned analysis and dis-
cussion, the implementation step of the bootstrap ensemble
SCNs based on the proposed simultaneous robust training
method is summarized in Algorithm 1.

Algorithm 1 Bootstrap Ensemble SCNs Using the Proposed
Simultaneous Robust Training Method

Input: Data set D = {(xxxi , yi ) ∈ Rd × R}N
i=1.

Output: βββ.
1: Initialization: Set the initial hyperparameters in (32);
2: Generate K subsample data sets from data set D;
3: Generate K base SCNs and build the ensemble SCNs;
4: Calculate the initial output weights βββ using (26);
5: while ||βββ(m+1) − βββ(m)|| ≥ κ do
6: Calculate the residual error vector;
7: Obtain the robust estimator s and weight matrix W (m);
8: Compute output weights βββ(m+1) using (32);
9: Update the terminating condition;

10: end while
11: Return βββ of the bootstrap ensemble SCNs.

C. Estimation of Hyperparameters Using EM Algorithm

In order to obtain optimal output weights of the ensemble
SCNs, hyperparameters σ 2

ε and σ 2
β should be chosen sensibly.

Accordingly, hyperparameters σ 2
ε and σ 2

β are optimized by the
EM algorithm [36].

From the marginal likelihood p(YYY |XXX , σ 2
ε , σ

2
β ), we can see

that the output weights βββ are marginalized out. Thus, the out-
put weights βββ can be treated as the latent variables, and the
EM algorithm can be implemented to optimize the marginal
likelihood function. Since the output weights βββ are treated as
latent variables, the data set {YYY ,βββ} is referred to the complete
data. Given the initial hyperparameters σ 2

ε and σ 2
β , one can

obtain the output weights βββ by using Algorithm 1. Then, in the
expectation step (E step) of the EM algorithm, we compute
the expectation of the logarithm of the complete-data marginal
likelihood function. In the maximization step (M step) of the
EM algorithm, we reestimate σ 2

ε and σ 2
β by maximizing the

expectation obtained in the E step.
By computing the marginal likelihood function and taking

its logarithm, the following expression can be obtained:
ln p

(
YYY ,βββ|XXX , σ 2

ε , σ
2
β

) = ln p
(
YYY |XXX ,βββ, σ 2

ε

) + ln p
(
βββ|σ 2

β

)
. (33)

The σ 2
ε and σ 2

β can be obtained by maximizing the logarithm
of the complete-data marginal likelihood function

σ 2
ε∗, σ

2
β∗ = arg max

σ 2
ε ,σ

2
β

{
ln p

(
YYY ,βββ|XXX , σ 2

ε , σ
2
β

)}
. (34)

Then, the EM algorithm is used to solve the above-
mentioned optimization problem to obtain the optimal
hyperparameters. In the E step, by taking expectation of
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ln p(YYY ,βββ|XXX , σ 2
ε , σ

2
β ) with respect to βββ, we can derive

E
[

ln p
(
YYY ,βββ|XXX , σ 2

ε , σ
2
β

)
v]

= − 1

2σ 2
ε

K∑
k=1

N∑
n=1

E
[(

yn
k − hhh(xxxn

k )βββk
)2]

+ K × N

2
ln

1

2πσ 2
ε

+ K × (L + d)

2
ln

1

2πσ 2
β

− 1

2σ 2
β

K∑
k=1

E
[‖βββk‖2

2

]
(35)

where E[·] denotes the statistical expectation operator.
In the M step, the derivative of E[ln p(YYY ,βββ|XXX , σ 2

ε , σ
2
β )] with

respect to σ 2
β is set to zero

∂

∂
(
σ 2
β

)E
[

ln p
(
YYY ,βββ|XXX , σ 2

ε , σ
2
β

)]

= − K × (L + d)

2
σ 2
β + 1

2

K∑
k=1

E
[‖βββk‖2

2

] = 0. (36)

Then, the reestimation of σ 2
β is

σ 2
β =

K∑
k=1

E
[‖βββk‖2

2

]
K × (L + d)

=

K∑
k=1

[∥∥βββ∗
k

∥∥2
2 + Tr(���k)

]
K × (L + d)

=
‖βββ∗‖2

2 +
K∑

k=1
Tr(���k)

K × (L + d)
(37)

where βββ∗
k represents the current output weights of the kth base

SCN. βββ∗ represents the current output weights of the ensemble
SCNs, and Tr(·) denotes the trace operator for matrix.

The derivative of E[ln p(YYY ,βββ|XXX , σ 2
ε , σ

2
β )] with respect to

σ 2
ε is set to zero, and we can obtain

∂

∂
(
σ 2
ε

)E
[

ln p
(
YYY ,βββ|XXX , σ 2

ε , σ
2
β

)]

= − K × N

2
σ 2
ε + 1

2

K∑
k=1

N∑
n=1

E
[(

yn
k − hhh(xxxn

k )βββk
)2]

= − K × N

2
σ 2
ε + 1

2

K∑
k=1

E
[‖yyyk − HHHkβββk‖2

2

]
= − K × N

2
σ 2
ε

+ 1

2

K∑
k=1

[∥∥yyyk − HHH kβββ
∗
k

∥∥2
2 + Tr

(
HHH T

k HHHk���k
)] = 0. (38)

Then, the reestimation of σ 2
ε is

σ 2
ε =

K∑
k=1

[∥∥yyyk − HHH kβββ
∗
k

∥∥2
2 + Tr(HHH T

k HHHk���k)
]

K × N

=
‖YYY − Hβββ∗‖2

2 +
K∑

k=1
Tr

(
HHH T

k HHHk���k
)

K × N
. (39)

Algorithm 2 Estimation of PIs Using the Proposed Method
Input: The training data and testing input data xxx∗.
Output: ŷ∗, L(xxx∗) and U(xxx∗).
1: Initialization: Set the ensemble size K , the predefined CL,

the number of hidden nodes L of base SCN, the varying
scope of random parameters ϒ = [−μ j , μ j ]J

j=1, the maxi-
mum random configuration times Tmax and the parameters
involved in Algorithm 1;

2: Generate K subsample data sets from the training data set
using bootstrap method;

3: Build K base SCNs by using SC-III algorithm proposed
in [27] based on the K data sets generated in step 2;

4: Establish ensemble SCNs;
5: while terminating condition (40) is not reached do
6: Build the robust ensemble SCNs based on Algorithm 1

(step 5−step 11);
7: Estimate σ 2

β and σ 2
ε using (37) and (39);

8: Update the hyperparameters in (32);
9: Renew the terminating condition (40);

10: end while
11: Output βββ∗ = [βββ∗T

1
, . . . ,βββ∗T

K ]T of the ensemble SCNs and
the hyperparameters σ 2

ε∗ and σ 2
β∗ ;

12: Input the testing data xxx∗;
13: Calculate ŷ∗ using (41);
14: Compute L(xxx∗) and U(xxx∗) using (42).

The proposed simultaneous robust training process of the
ensemble SCNs based on the Bayesian ridge regression and
M-estimate is summarized as follows. First, the initial hyper-
parameters are assigned. Second, we use Algorithm 1 to
compute output weights of the robust ensemble SCNs. Third,
the hyperparameters are reestimated based on the EM algo-
rithm by using the output weights obtained in the second step.
The second and third steps are repeated until some terminating
conditions are reached. In this article, the terminating condi-
tion is selected as follows:∣∣∣∣∣

E
[

ln p
(
YYY ,βββ∗

new|XXX , σ 2
ε , σ

2
β

)]
E
[

ln p
(
YYY ,βββ∗

old|XXX , σ 2
ε , σ

2
β

)] − 1

∣∣∣∣∣ < τ (40)

where βββ∗
new and βββ∗

old denote the current and previous output
weights of the ensemble SCNs, respectively. | · | is the operator
of computing absolute value, and τ is a small positive number,
which is set to (1e − 6) in this article.

D. Estimation of PIs

Once the output weights βββ∗ = [βββ∗T
1
,βββ∗T

2
, . . . ,βββ∗T

K ]T of the
ensemble SCNs are obtained, for the new input variable xxx∗,
we can obtain the point prediction value of the corresponding
output as follows:

ŷ∗ = 1

K

K∑
k=1

ŷ∗
k = 1

K

K∑
k=1

HHHk(xxx
∗)βββ∗

k . (41)

As mentioned in Section II-A, another neural network
is needed to estimate the variance of the noise. This
process is time-consuming due to the indirectly training of
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an extra neural network based on a constructive data set
[3], [24]. However, the hyperparameter σ 2

ε∗ can be used to
estimate the variance of uncertainty, which is caused by the
intrinsic noise [24]. The variance of uncertainty caused by
model mismatch is calculated by using (6). Then, the lower
bound L(xxx∗) and the upper bound U(xxx∗) of the PI with CL =
(1 − α)% are given as follows:⎧⎨

⎩
L(xxx∗) = ŷ∗ − t1−α/2(K )

√
σ 2

ŷ∗ + σ 2
ε∗

U(xxx∗) = ŷ∗ + t1−α/2(K )
√
σ 2

ŷ∗ + σ 2
ε∗ .

(42)

According to the above-mentioned description and analysis,
the implementation procedure of the proposed method of
estimating PIs is summarized in Algorithm 2.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the performance of the proposed algorithm is
evaluated on three benchmark data sets and a real-world data
set collected from a refinery in Southern China. The proposed
algorithm is compared with several representative algorithms
of estimating PIs including: 1) the single-neural network-
based algorithms: Bayesian [5], delta [7], and MVE [8]
and 2) the ensemble neural networks-based algorithms: the
negative-correlation-learning-based ensemble RVFL (NCL-
E-RVFL) [2] and the optimized bootstrap method (OPT-
bootstrap) [15]. The experiment is repeated 50 times, and the
average value of the 50 experimental results is reported. All
the algorithms in the experiment are programed in MATLAB
and run on a computer with a 3.4-GHz CPU.

The root-mean-squared error (RMSE), the mean absolute
percentage error (MAPE), and the Nash–Sutcliffe coefficient
(NSC) are adopted to evaluate the prediction accuracy of each
method, and a large NSC indicates high prediction accuracy.
The PI coverage probability (PICP), the normalized mean
PI width (NMPIW), and the Winkler score (W-score) are
introduced to evaluate the performance of the PIs. The PIs
with high quality should have small NMPIW while the PICP
is larger than the predefined CL, and the narrower PIs have
the smaller absolute value of W-score [10]. These indices are
defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RMSE =
√

1

Nt

Nt∑
i=1

(yi − ŷi )
2

MAPE = 100% × 1

Nt

Nt∑
i=1

∣∣∣∣∣
(
yi − ŷi

)
yi

∣∣∣∣∣
NSC = 1 −

Nt∑
i=1

(ŷi − yi )
2

Nt∑
i=1

(ȳ − yi )
2

(43)

where ŷi is the prediction value, yi is the observed value, and
ȳ = ∑Nt

i=1 yi/Nt⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PICP = 1

Nt

Nt∑
i=1

Bi

NMPIW = 1

RNt

Nt∑
i=1

[U(xxxi )− L(xxxi )]
(44)

where Nt is the number of testing data, Bi denotes a Boolean
variable, if yi ∈ [L(xxxi ),U(xxxi )], Bi = 1, otherwise Bi = 0,
and R denotes the range of observed output values

W-score = 1

Nt

Nt∑
i=1

Si (45)

where

Si =

⎧⎪⎨
⎪⎩

−2α ×�i − 4[L(xxxi )− yi ], if yi < L(xxxi )

−2α ×�i , if yi ∈ [L(xxxi ),U(xxxi )]
−2α ×�i − 4[yi − U(xxxi )], if yi > U(xxxi )

(46)

where �i = U(xxxi )− L(xxxi ) and α = 1 − CL.

A. Case Studies on Benchmark Data Sets

Three benchmark data sets are collected from KEEL1:
Wizmir (DB1), Friedman (DB2), and Treasury (DB3). Each
data set is divided into three parts: 60% of the total samples
are used as the training data, 20% of the total samples are
used as the validation data, and the remaining 20% of the
total samples are used as the testing data.

1) Parameter Setting: In this article, the predefined CL of
the estimated PIs is set to 90%, i.e., CL = (1 − α)% = 90%.
In the proposed method of estimating PIs, the input weights
and hidden biases of base SCN in the ensemble are automati-
cally selected in the varying set [−μ,μ], μ = 1, 2, 4, 8, based
on the supervisory mechanism (12), the maximum random
configuration time is Tmax = 50, and all base SCNs have
the same number of hidden nodes. Therefore, the parameters
of the ensemble SCNs to be optimized include the number of
hidden nodes L and the size of ensemble K . The exhaustive
linear search is an effective method to optimize the parameters
in the ensemble [25]; therefore, it is also adopted to select the
parameters L and K . The parameter L is searched in [10, 80]
with ten steps. According to the empirical rule stated in [15],
it is known that in real-world applications, if one wants to
estimate the statistical bias and variance based on bootstrap,
there should be about 100 groups of bootstrap subsample data
sets. If the number of bootstrap data sets exceeds 100, there
is little improvement in the estimated performance. In order
to estimate the PIs with high quality, in this study, the size
K of ensemble SCNs, namely, the number of subsample data
sets, is searched in [75, 110] with five steps. The initial values
of the hyperparameters are set to σ 2

ε = 1 and σ 2
β = 0.5.

All the parameters are determined according to the results
on the validation data, the parameter K is set to 80, and the
parameter L is set to 50, 40, and 60 for DB1, DB2, and DB3,
respectively.

2) Comparative Experiments: The evaluation indices of the
proposed PIs and other representative methods on the normal
benchmark data sets are listed in Tables I and II. As shown
in Table I, the RMSE and MAPE of the proposed method
are smaller than that of other methods, and the NSC is the
largest among all the methods. Therefore, the proposed method

1KEEL: http://www.keel.es/
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Fig. 3. Average evaluation indices with a different ξ of each method on the three benchmark data sets. (a) DB1. (b) DB2. (c) DB3.

TABLE I

PREDICTION ACCURACY OF EACH METHOD ON NORMAL DATA SET

possesses a higher prediction accuracy on each normal data set.
It can be observed from Table II that the proposed method has
a reasonable PICP since its PICP is greater than the predefined
CL = 90%, while the NMPIW and the absolute value of

TABLE II

EVALUATION INDICES OF PIS OF EACH METHOD ON NORMAL DATA SET

W-score are exactly smaller than that of other methods. This
indicates that the proposed method can estimate narrower PIs
and maintain the appropriate coverage probability on the three
benchmark data sets.
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To further evaluate the performance of the proposed method,
ξ% (ξ = 5, 10, 15, 20, 25) of the total training samples
is randomly chosen, and the noise, which is produced as
y ×rand (0, 1)×[−25%, 25%], is introduced into these chosen
training samples, where rand (0, 1) denotes a random number
in (0, 1). The average evaluation indices with different ξ of
each method are shown in Fig. 3. According to Fig. 3, one
can see that when the noise contamination rate is increased,
the proposed method can maintain smaller RMSE and MAPE
and larger NSC than that of other methods on all the three
data sets; this demonstrates that the prediction accuracy of the
other comparative methods decreases more rapidly than that of
the proposed method with the increase of noise contamination
rate. The PICPs with different ξ of the proposed method are
slightly small but still greater than the predefined CL (90%);
the NMPIW and absolute value of W-score are exactly smaller
than that of other representative methods with the increasing ξ .
These results indicate that the proposed method can construct
PIs with narrower interval width, better prediction accuracy,
and the appropriate coverage probability, which can hold the
predefined CL.

Remark 3: A large NMPIW can lead to a high PICP, but the
PIs with extremely large interval width (i.e., large NMPIW)
convey no information about the actual targets. Therefore,
the optimal PIs should have small NMPIW, and the PICP
should not be less than the predefined CL [9].

B. Prediction of Total Nitrogen in Crude Oil

In this experiment, the real-world data set is collected from
the fast evaluation system for the physicochemical properties
of crude oil in a refinery in Southern China. The input of
the estimated PIs is the nuclear magnetic resonance (NMR)
hydrogen spectrum data xxx ∈ R700. Total nitrogen content is an
important physicochemical property for evaluating the crude
oil, which exists in forms of different organic compounds.
The existence of nitrogen in crude oil can lead to a series of
problems, such as catalyst damage and reduction of storage
stability. The nitrogen can also result in the darkened oil
and the formations of colloids and precipitate in storage and
transportation. Hence, fast evaluation of total nitrogen in crude
oil is of great significance for increasing the economic benefits
of refineries. Therefore, the total nitrogen content in crude oil
is selected as the modeling output in this study.

A total of 863 sets of real-world data between May 2016 and
October 2017 are collected. The 863 groups of NMR hydrogen
spectra are shown in Fig. 4, where the “x-axis” represents the
relative chemical shift, and the “z-axis” indicates the intensity
of the hydrogen absorption peak at the corresponding chemical
shift. The corresponding total nitrogen content of crude oil
was collected from the laboratory of the refinery. The high
dimensionality of NMR spectrum data may cause the problem
of overfitting and increase the computational cost. The features
of NMR spectrum data can be effectively extracted by the
principal component analysis (PCA) [37]. Hence, the PCA is
adopted to reduce the dimensionality of NMR spectrum data,
and the number of principal components with a 99% cumu-
lative percent variance contribution rate (CPVCR) is chosen.

Fig. 4. 863 groups of the NMR hydrogen spectra.

Fig. 5. Eigenvalue and variance contribution rate of each component.

By using PCA, the eigenvalue and variance contribution rate
can be computed, as shown in Fig. 5, where only the first
20 terms are plotted for better visualization. From Fig. 5,
we can conclude that the CPVCR of the first 17 terms
is 99.24%. This means that the first 17 terms contain most
of the information about the original input data. Accordingly,
17 principal components are chosen as the inputs of the PIs.
Then, the data set is split into three parts, of which 733 groups
are used as the training data, 55 groups are used as the
validation data, and the remaining 75 groups are used for
performance evaluation.

1) Parameter Selection: The predefined CL of the estimated
PIs is set to 95%, i.e., CL = (1 − α)% = 95%. The original
data set is the training data set. The random parameters (input
weights and biases) of the base SCNs in the ensemble are
adaptively selected in the varying set [−μ,μ], μ = 0.5, 1, 2, 4,
and the maximum random configuration time is Tmax = 50.
The exhaustive linear search is also adopted to determine the
number of hidden nodes L and the ensemble size K . The
parameter L is searched in [10, 100] with ten steps, and K
is searched in [70, 115] with five steps. The initial values
of hyperparameters are set to σ 2

ε = 2 and σ 2
β = 5. The

influences of different L and K on the results of the validation
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Fig. 6. Influence of different L and K on the performance of PIs. (a) RMSE.
(b) NSC. (c) PICP. (d) W-score.

data set are shown in Fig. 6. It can be seen that with the
increase of the parameters L and K , the greater PICP can be
obtained. However, the sharpness and prediction accuracy of
the estimated PIs decrease. Therefore, in view of the coverage
probability, interval width, and prediction accuracy of the
estimated PIs, the parameters L and K are set to L = 70
and K = 90, respectively.

2) Comparison of Experimental Results: The convergences
of hyperparameters in the training process of ensemble SCNs,
which includes the variance σ 2

β of output weights, the variance
σ 2
ε of noise, and the regularization coefficient λ = σ 2

ε /σ
2
β

are shown in Fig. 7. As shown in Fig. 7(a), (b), and (d),
the optimal hyperparameters σ 2

ε and σ 2
β can be obtained after

Fig. 7. Convergence process. (a) σ 2
β . (b) σ 2

ε . (c) λ. (d) Log likelihood
expectation of the complete data.

several iterations. From Fig. 7(c), it can be observed that the
optimal regularization coefficient can be obtained by iterative
optimization. This means that the optimal output weights of
the ensemble SCNs can be achieved.

To better illustrate the superiority of the proposed method,
Table III gives the PICPs, NMPIWs, and W-scores of the
proposed method and the existing methods, which are applied
to quantify the quality of PIs. From Table III, we can observe
that the PICP of the proposed method is greater than that
of the existing methods, while the NMPIW and the absolute
value of the W-score are smaller. According to these results,
we can conclude that the estimated PIs of the proposed method
have higher coverage probability and narrower shape, which
indicates the effectiveness of the proposed method.
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Fig. 8. Estimated PIs and prediction results of each method. (a) Proposed method. (b) OPT-bootstrap method. (c) NCL-E-RVFL method. (d) Bayesian
method. (e) Delta method. (f) MVE method.

TABLE III

EVALUATION INDICES OF PIs USING EACH METHOD

The estimated PIs and point prediction results of the pro-
posed method and the other five comparative methods are
given in Fig. 8. It can be seen from Fig. 8(a) that the estimated
PIs based on the proposed method can cover all other output
variables besides one point, which indicates the high reliability
of the estimated PIs of the proposed method. One can also
see that the point prediction of the proposed PIs can fit the
actual output variables better. It can also capture the trend of
the output variables, which exhibits good prediction accuracy.
According to Fig. 8(b)–(f), we can notice that the number of

TABLE IV

PREDICTION ACCURACY COMPARISON OF EACH METHOD

output variables that are not covered by the estimated PIs of
the five existing methods is greater than that of the proposed
method. This result indicates that the estimated PIs of the
proposed method outperform that of the existing methods in
terms of coverage probability.

The RMSEs, MAPEs, and NSCs of the proposed method
and the existing methods are given in Table IV for evaluating
the prediction accuracy. The NSC takes the value in [−∞, 1],
and the greater value of NSC means that the prediction model
has higher prediction accuracy. From Table IV, it can be
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Fig. 9. Scatter diagram of prediction results and the PDF of the prediction errors of each method. (a) Scatter diagram. (b) PDF.

Fig. 10. Performance of each method with a different ξ . (a) NMPIW. (b) W-score. (c) RMSE. (d) NSC.

observed that the RMSE and MAPE of the proposed method
are smaller than that of the existing methods. On the contrary,
the NSC is greater than that of the existing methods. Therefore,
the proposed method has better accuracy than the existing
methods. The scatter plots of the actual values and prediction
values and the PDF of the prediction error are shown in Fig. 9.
According to Fig. 9(a), we can see that prediction values of the
proposed method are closer to the actual values than that of
the other five comparative methods. Moreover, it can be also
concluded from Fig. 9(b) that the PDF of prediction errors of
the proposed method exhibits a narrower impulse shape around
zero; this demonstrates that the mean value of prediction errors
is zero in the perspective of probability.

To further verify the robustness of the proposed method,
the noise, which is generated in a manner similar to that
in the previous experiment in Section IV-A, is introduced
into the training data. The variations of mean values and

TABLE V

MEAN VALUES OF PICP WITH A DIFFERENT ξ OF EACH METHOD

standard deviations of the NMPIW, W-score, RMSE, and NSC
with different noise contamination rates of each method are
exhibited in Fig. 10, and the mean values of PICP with
different noise contamination rate ξ of each method are
listed in Table V. According to the comparisons of NMPIW
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TABLE VI

COMPUTATIONAL EFFICIENCY COMPARISON OF EACH METHOD

and W-score shown in Fig. 10(a) and (b) as well as the
comparisons of RMSE and NSC shown in Fig. 10(c) and (d),
one can find that the estimated PIs of the proposed method
can maintain narrower shape and higher prediction accuracy
with the increase in the noise contamination rate. It can also
be seen from Fig. 10 that when the noise contamination rate
is increased, the prediction accuracy and the sharpness of the
estimated PIs of the existing methods decrease more rapidly
than that of the proposed method. It can be observed from
Table V that although the noise is introduced, the proposed
method and the existing methods can maintain a large cov-
erage probability. Only in the case of ξ = 10, the MVE
method outperforms the proposed method. It can be seen from
Fig. 10(a) that the interval width of the MVE method is larger
than that of the proposed method. As mentioned in Remark 3,
a wider interval may lead to a higher PICP. Therefore, the case
that the PICP of MVE method is larger than that of the
proposed algorithm can occur. Therefore, it can be concluded
that the estimated PIs of the proposed method are more
robust than the PIs that are estimated by using the existing
methods.

The computational efficiency (training time and testing
time) of each method is listed in Table VI. One can see
from Table VI that the iterative optimization process of the
proposed method slows the training process. The training time
of the method based on ensemble neural networks is obviously
longer than that of the method based on the single-neural
network. The modified firefly algorithm is adopted in the
OPT-bootstrap method, which leads to the expensive computa-
tional cost. The testing time of the proposed method is slightly
longer than that of the method based on the single-neural
network, but the testing time is still acceptable in the real-
world case carried out in this article.

From the above-mentioned comparison of the experimental
results on the real-world data set, we can see that com-
pared with the representative methods of estimating PIs,
the proposed method can estimate PIs with higher coverage
probability, better prediction accuracy, and narrower interval
width. It can effectively quantify the potential uncertainties
associated with the targets. The proposed method is also
robust to the noise and outliers to a certain extent. Moreover,
the proposed method can also guarantee the computational
efficiency and meet the requirement of application in the
refinery. The experimental results also demonstrate that the
PIs estimated by the proposed method can provide reliable and
useful information for the decision-making process of crude
oil refining.

V. CONCLUSION

This article presents a novel method of estimating PIs by
using ensemble SCNs and bootstrap method. A simultaneous
robust training algorithm of the ensemble SCNs based on the
Bayesian ridge regression and M-estimate is developed, which
can achieve the cooperation among the base SCNs and obtain
considerable robustness. The EM algorithm is derived to esti-
mate the hyperparameters of some assumed prior distributions;
hence, the estimated PIs with better prediction accuracy and
higher reliability are obtained. Moreover, the experiments are
carried out using three benchmark data sets and a real-world
data set collected from a refinery. The experimental results
illustrate that the proposed method can estimate PIs with high
quality and guarantee both certain robustness and computa-
tional efficiency. The experimental results on the real-world
data set also demonstrate that the proposed method is suitable
for the application in the fast evaluation of physicochemical
properties of crude oil, and it also can be beneficial to the
decision-making process of crude oil refining.
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