
1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2919268, IEEE
Transactions on Industrial Informatics

1

Stochastic Configuration Networks Based
Adaptive Storage Replica Management for

Power Big Data Processing
Changqin Huang, Member, IEEE, Qionghao Huang, Student Member, IEEE, Dianhui Wang*, Senior

Member, IEEE

Abstract—In the power industry, processing business big
data from geographically distributed locations, such as on-
line line-loss analysis, has emerged as an important applica-
tion. How to achieve highly efficient big data storage to meet
the requirements of low latency processing applications is
quite challenging. In this paper, we propose a novel adaptive
power storage replica management system, named PARMS,
based on stochastic configuration networks (SCNs), in which
the network traffic and the data center (DC) geo-distribution
are taken into consideration to improve data real-time pro-
cessing. First, as a fast learning model with less computation
burden and sound prediction performance, the SCN model is
employed to estimate the traffic state of power data networks.
Then, a series of data replica management algorithms is
proposed to lower the effects of limited bandwidths and
a fixed underlying infrastructure. Last, the proposed PARMS
is implemented using data-parallel computing frameworks
(DCFs) for the power industry. Experiments are carried out in
an electric power corporation of 230 million users, CSG, and
the results show that our proposed solution can deal with
power big data storage efficiently and the job completion
times across geo-distributed DCs are reduced by 12.19% on
average.

Index Terms—Power big data processing, stochastic config-
uration networks, geo-distributed, cloud storage, data replica
optimization.

I. INTRODUCTION
As a key national infrastructure, the power grid is

rapidly moving towards automation and intelligence,
and with the widespread use of IoT technologies, power
grid data takes on typical big data features, such as
the large volume of exponential growth [1]. The pro-
cessing and utilization of big data plays an important
role in smart power grid development. In many big
data applications, near real-time data processing, such as
online power line-loss calculation, is the most frequent
and challenging. In addition, the underlying network
architecture can not be casually changed for a rela-
tively fixed infrastructure [2]. Therefore, based on the
existing data storage infrastructure, how to meet the

Changqin Huang is with Department of Educational Technology,
Zhejiang Normal Univerity, Jinhua, China.

Qionghao Huang is with School of Information Technology in Edu-
cation, South China Normal University, Guangzhou, China.

Dianhui Wang is with Department of Computer Science and Infor-
mation Technology, La Trobe University, Melbourne, Australia.

* Corresponding author (dh.wang@latrobe.edu.au).

requirements of low latency data processing becomes
increasingly significant to intelligent power data appli-
cations. In general, there are two major strategies to
solve the aforementioned issue originating from limited
bandwidths and datacenter geo-distribution, i.e. task
scheduling and data replica management [3]. Currently,
a large body of research has been devoted to the task
scheduling, however, the performance of these works
greatly varies because of the difference in application
types, so the former is not fully appropriate for a variety
of power data applications [4], [5]. Nevertheless, the data
replica strategy is emerging as a promising approach to
provide underlying support for a diverse array of appli-
cations [6]. When utilizing cloud computing with data
replica, some solutions for data storage achieve a certain
performance [7], [8], however, they are designed in a
centralized fashion, in which all data is pulled to a single
cluster for processing, rending them inefficient in many
power data applications due to inadequate bandwidths
or long latency [5]. Thereby, under the data-parallel
computing frameworks (DCFs, e.g. MapReduce, Dryad,
Spark), developing adaptive storage replica management
over geo-distributed data centers(DCs) is a practical
and preferable solution for power big data processing
issues [9].

Traffic state prediction is critical to optimize data
storage over distributed networks. A newly developed
randomized learner model, termed stochastic configura-
tion networks (SCNs) [10], can learn complex mappings
from sampling data quickly with reasonably good mod-
elling performance, compared to neural networks built
using the well-known error back-propagation learning
algorithm. Therefore, we adopt SCNs to implement this
highly time-sensitive network traffic state prediction in
a real-time fashion. Based on the fast learning benefits of
SCNs, we develop PARMS by taking some power data
processing characteristics (e.g. cyclicity, instantaneity)
into account. Our proposed PARMS has been success-
fully applied to a real-world application in the China
Southern Power Grid (CSG) - one of the two biggest power
corporations in China, providing electric power supplies
for 230 million people from 5 provinces over one million
square kilometers.

Overall, this paper makes three main contributions:

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2919268, IEEE
Transactions on Industrial Informatics

2

1) Practical, near real-time, SCN-based network traf-
fic prediction is addressed for a time-sensitive
scheduling situation in data-parallel computing.

2) Adaptive replica management approaches integrat-
ing traffic prediction are proposed to lower the con-
sequence of limited bandwidth and an underlying
infrastructure for power big data processing.

3) A systematic, efficient cloud storage framework is
designed and implemented to support power big
data applications across geo-distributed DCs using
DCFs in the power industry.

The remainder of this paper is organized as follows:
Section III reviews the related work, Section IV details
the proposed algorithms for PARMS, Section V describes
the system implementation, and Section VI reports the
results of the experiments, followed by the conclusion in
Section VII.

II. RELATED WORK
With high performance and lower cost, cloud storage

is widely used in various fields, including the power
industry[2], [7], [8]. Using core technologies in cloud
computing, researchers have proposed a storage archi-
tecture to monitor data management and a free table
storage model in the NoSQL-based LaUD-MS system
[11]. Jun Zhu et al. [12] proposed a framework-based
software approach to address key utility big data storage
and processing issues. Yongheng Li et al. [7] designed a
Hadoop and HDFS based big data system. In addition,
cloud storage technologies have been applied into some
specific scenarios in the power industry [13], [14], [1].

Most of the research in this area is designed for a
centralized computing system, which results in poor
performance when tasks of DCFs [15] dispatch across
geo-distributed DCs [5], which are common scenarios
in the power industry. To lower the consequences of
limited bandwidth and to achieve low latency of data
access in such scenarios, some job scheduling algorithms
are proposed, such as WANalytics [16], Pixida [17],
DESRP [18], Gaia [4], Flutter [5], etc. Pixida [17] employs
a generalized min-k-cut algorithm to cut the DAG into
several parts for execution, and each part is executed in
one data center. Gaia [4] adapts a new synchronization
model to avoid unnecessary global synchronization, and
thus preserves the traffic across geo-distributed data
centers.

In addition to job scheduling, optimizing replica man-
agement in distributed DCs is an important solution [3],
and widely used in various domains, such as mobile
networks [19], energy-saving management [20], video
services [21], social networks [22], virtual machine man-
agement [23]. To address the important placement prob-
lem in replica technology, Xili Dai et al. [21] proposed a
scheduling mechanism based on a tripartite graph and
k-list algorithm, which optimizes access latencies while
maintaining the benefit of low storage cost. Conducting
analytical studies and experiments that identify the per-
formance issues of MapReduce in data centers, based

on a topology-aware heuristic algorithm, Incheon Paik
et al. [24] presented an optimal replica data placement,
minimizing global data access costs. Yi Wang et al. [25]
proposed a K-SVD sparse representation technique to
improve the smart meter data compression ratio and
classification accuracy in the electricity industry. In re-
lation to another important problem in replica technolo-
gy, using the multithreaded and integrated maximum
flow, Nihat Altiparmak et al. [26] present an optimal
replica selection algorithm to handle heterogeneous s-
torage architectures, and compared with a maximum
flow algorithm in a black-box manner, this approach
reduces massive amount of unnecessary flow calcula-
tions, achieving less latency in response. To reduce the
data availability time, and data access time, Nagarajan et
al. [27] developed the replication algorithm that makes
decisions on the selection and placement of replica us-
ing multiple criteria. This algorithm considers multiple
parameters such as storage capacity, bandwidth, and the
communication cost of geo-distributed sites.

However, most of these works focus on the opti-
mization of general domains, with only a few focusing
on storage scheduling optimization for geo-distributed
power big data systems, and furthermore the character-
istics of the power industry received little attention in
their research.

III. PARMS: MOTIVATION AND SOLUTION
In this section, we introduce the motivation of PARMS,

then give an overview of the proposed solution.

A. Characteristics of the Power Industry
Taking CSG for example, here we describe some dis-

tinct characteristics of big data processing in power in-
dustries, which serve as our motivation for the proposed
algorithms or developed applications.

Headquarter

Province Branch

City Branch

Fig. 1. A brief view of the hierarchical division of CSG.

a) Hierarchicality of Data Centers: As Fig. 1 shows,
CSG1 has strict hierarchical administrative and geo-
graphic divisions, which consists of the headquarter,
province branches, and city branches. Thus, as Fig. 2
shows, CSG establishes relatively fixed geo-dispersed
DCs with the same hierarchy as the geographic division,

1http://www.csg.cn

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2919268, IEEE
Transactions on Industrial Informatics

3

which cannot casually alter the network topology due to
security or other concerns.

Headquarter

Guangdong Province Hainan Province

Shenzhen City XXX City Sanya City

…

… …

Fig. 2. The geo-distributed DCs are connected with private commer-
cial high-speed data links, the topology and bandwidth of network
between DCs is relatively stable.

b) Instantaneity of Data Processing: Processing da-
ta is cpu-intensive, memory-intensive, and cpu-memory-
intensive. However, lots of power big data-based appli-
cations require real-time operations with strict demand-
s on low latency across geo-distributed DCs. Limited
bandwidths are likely to cause a bottleneck for the
low latency demand of big data processing applications
across geo-distributed DCs. Thus, with such a strictly
stable structure of DCs, how to develop a practical
solution to lower the implications caused by limited
bandwidths and geo-distributed DCs is a very urgent
and challenging problem to be solved.

c) Cyclicity or Stability of Data Processing: The
locations of sensors, the volume of data collected, and
the time to transfer the collected data are relatively
stable. Taking a city named Zhongshan in Guangdong
Province for example, smart meters and other sensors
transfer collected data to DCs every 15mins and about
2-3 Terabytes of textual data is collected every month. So,
there is an obvious cyclicity of the time to collect data
from sensors. With such potential cyclicity or patterns in
data processing, it is possible to develop a solution based
on machine learning or artificial intelligence to minimize
data motion across geo-distributed DCs.

d) Heterogeneity of Computation and Storage Re-
sources: Due to the high computation demand and
storage needed for power big data processing, many
devices with different capacities (e.g. CPU speed, IOPS)
in computation or storage are continuously deployed to
the centers, resulting in a significant heterogeneity to
the performance of computing or storage servers, and
the inter-datacenter bandwidths are also heterogeneous.
Such a heterogeneity results in some scalability and
extendibility problems for the systems.

B. Overview of PARMS
To achieve the low latency processing of power big

data across the relatively fixed geo-distributed DCs, we

design a traffic prediction-based adaptive replica man-
agement system, PARMS, for power big data processing.

Fig. 3 illustrates the four main components of the
architecture of PARMS. The tracing daemons and threads
in the clusters monitor the system and collect running
information for GaExUnit; GaExUnit reprocesses the logs
and forwards them to Intelligent Analysis System for
analysis. With the output from Intelligent Analysis System,
the replica management component in GaExUnit runs
the algorithms to optimize the placement and selection
of replica, and Optimizer Daemon executes the optimal
instructions.

`

· Intelligent Meters Data

· Line losses Data

· Facilities Data

VSThVSTh VSTnVSTnVSTaVSTa

VCTaVCTa VCThVCThVCTh VCTmVCTmVCTm

Intelligent Analysis System

P
o

w
e

r
B

ig
 D

a
ta

 S
e

ts

Lo
g

s

D
a

ta
b

a
se

Migration Migration

Replica Optimizer

Fig. 3. The architecture of PARMS: A network traffic prediction-
based adaptive replica management system for a geo-distributed cloud
storage system in the power industry.

A summary of our solution, PARMS, is as follows:
1) We adapt a fuzzy C-means-based device cluster-

ing algorithm to deal with the scalability and ex-
tendibility problem brought by the heterogeneity
in computing or the storage servers for the power
industry: (Section IV-A).

2) We propose a practical, near real-time SCN-based
network traffic prediction mechanism with deep
consideration characteristics (such as, hierarchical-
ity, cyclicity, stability) in the power industry (Sec-
tion IV-B).

3) We design power big data processing-oriented
replica placement and selection algorithms to accel-
erate data access across geo-distributed DCs, and
satisfy the low latency demand of data processing
in the power industry (Section IV-D and IV-E).

IV. ALGORITHMS FOR PARMS
We introduce clustering algorithms based on fuzzy

C-means to classify the capacity of underlying devices,
which provides valuable indexes of underlying devices
for replica management or system management. Based
on a deep learning model and the application-level in-
formation of the computing tasks, we employ a network
traffic load prediction framework to provide possible
network traffic in the near future for replica manage-
ment.

In the following, we detail the related algorithms for
PARMS.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2919268, IEEE
Transactions on Industrial Informatics

4

A. Classifying Underlying Devices

To deal with the stability and extendibility problem
caused by the heterogenous performance of computing
or storage servers, we categorize computing and stor-
age servers into different logical groups by applying a
clustering algorithm based on fuzzy C-means [28].

The power big data system structure can be simply
described as a directed graph G = (V , E) where the set
of vertices V = CN

∪
SN, CN = {cn1, ..., cni, ..., cnnc}

indicates computing nodes, SN = {sn1, ..., snj, ..., snns}
indicates data storage nodes (also called data nodes), and
E represents the transmission network links among the
nodes. Assume that there are n computing nodes or data
nodes in a system, with each node having np attributes
that determine the performance of the node (e.g. CPU
speed, IPOS). We denote p f i,k (1 ≤ k ≤ np, k ∈ N) as
the kth attribute of the ith node. Thus, all attributes of
the ith node can be represented as a vector:

PFi = (λ1 p fi,1, ..., λk p fi,k, ..., λnp p fi,np), PFi ∈ Rnp , (1)

where λk is a coefficient of the jth attribute that normal-
izes the various ranges of attribute values into 0-1.

Stacking all the attributes of n computation or storage
nodes, we have a matrix:

PF = (λk p fi,k)n×np
, PFi ∈ Rn×np , (2)

PF acts as the input for the clustering algorithm. Its
output is

LST = {LSTl |l ∈ [1, c]}, LCT = {LCTl |l ∈ [1, c]}, (3)

where a subscript of LCT or LST represents a node
cluster, as well as being an indicator of its capacity to
deal with data.

B. SCN-Based Network Traffic Prediction

Recently, some researchers used application-level da-
ta access patterns to predict traffic flow in data-
parallel computing-based big data processing systems,
and achieved better performance when predicting flow
size than traditional prediction algorithms [15], [29]. As
discussed in Section III-A, compared with other big data
processing platforms, there are more constraints on the
architecture of DCs, the data collection methods, and the
execution of power big data processing tasks, such as
hierarchicality, cyclicity and stability. These characteris-
tics enable us to develop a mechanism to learn priori
knowledge of task execution times in a DAG provision.
Therefore, we propose a practical mechanism to predict
network traffic over a period time in the future.

As Fig. 4 shows, the mechanism consists of three parts:
1) An operator execution time fitting model-based

stochastic configuration network [10].
2) A mechanism to extract DAG information from

data-parallel computing applications and calculate
flow size information out of each stage.

F
lo

w

C
a
lc

u
la

to
r

S-pattern

D
A

G

E
x
tr

a
c
to

r

Logs

Flow Size

T
ra

ff
ic

A
g
g
re

g
a
to

rexecution_time

Query

…

TD

establish_time

S
ta

g
e
s

......

......

......

......

Traffic

Prediction

Training

Fig. 4. The mechanism of network traffic prediction.

3) A time series analysis of job execution logs to find
certain patterns in the job execution order.

In the following, we detail our framework and provide
definitions and relevant algorithms.

Definition 1. TD (Task Descriptor), A descriptor of a
computing task executed by a worker node, is denoted as:

TRC = ⟨IS, DT, Pri, WCID, JCID, CPU, Mem, OP⟩ (4)

where IS is an integer indicating the input size of a
computing task, DT is an integer indicating the type of
collected data categorized by CSG, Pri is an integer for
scheduling , CPU and Mem are computing resources as-
signed by the scheduler, WCID is the clustering number
from the clustering algorithm, JCID is an integer indi-
cating whether a computing task is processor-intensive,
memory-intensive, or I/O-intensive, and OP is a code
number representing operator (e.g. map(), union()) of
data.

Definition 2. Task Event, a descriptor of an operator and
the volume of data to be processed, denoted as enk. The set of
task events with respect to operators provided by DCFs as an
event set of ε = {enk}, where we have k = 1, .., ne.

The enk can be represented by tuple (OP, IS), which
consists of an operator and the size of the input data.
Then the state of a task event at one time running in
the worker denoted as RTE(EN), where EN consists of
the task event and its duration is denoted as EN =
{(enk, tk)}. In particular, the value tk is zero when the
task event is complete or null. The state of work nodes
cni at time t can thus be denoted as:

Si,t = RTE(i, (enk, tk,i), ..., (enne , tne,i)). (5)

The fitting model accepts the changes in these states
that cause the fluctuation in task execution time. The
changes of variable values in Eqn. (5) over a time interval
is calculated as follows:

∆Si,∆t = ((Si,t ⊖ Si,t′), t)

= (RTE(i, (en1, ∆ti,1), ..., (enne , ∆ti,ne)), t).
(6)

where ∆t means the time left to finish a task event.
With the above definitions and formulation, we now

introduce our fitting model based on SCN. Compared
with traditional machine learning methods (e.g. BP, RBF

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2919268, IEEE
Transactions on Industrial Informatics

5

neural networks, SVM) [30] or other deep learning mod-
els (e.g. LSTM [31]), SCN introduces little overhead to the
system while achieving reliable prediction results, which
we demonstrate in the experiment. The input and output
of the fitting model fi are simplified as:

Xi,t = (t, TE, ∆Si,∆t), Yi,t = tTE, (7)

We use a similar mechanism in [15] which serves
as the second part of our prediction framework. In
addition to providing operator logs for the fitting model,
it outputs a tri-tuple (source, destination, flow size). With
this information, we use the prediction results from the
SCN model to predict the time for flow dumping into
the real-world network.

To mine certain or potential cyclicity in the power
industry as discussed in Section III-A, we employ simple
but efficient sequence pattern mining algorithms which
serve as the third part of our network traffic prediction
framework.

C. Replica Management

As an essential part of software systems for cloud
storage, replica technologies play a decisive role in im-
proving concurrent access, the reliability and availability
of data [32].

Replica management consists of replica generation,
replica deletion, replica placement and replica selection.
Several important factors exert significant influence on
the performance of replica management, such as the
capacity of replica hosts, the network state of replica
locations, and the characteristics of data-related appli-
cations (such as data queries and data analysis).

In this part, we give a brief introduction of the main
components of replica management in PARMS. In this
paper, we detail the relevant algorithms or mechanism
for replica placement(Section IV-D) and replica selection
(Section IV-E), which are specially designed for the
power industry. As for replica generation and replica
deletion, based on our previous work [33], we make
some alternations to use in this work.

a) Replica Generation: Power cloud storage systems
are highly dynamic computing environments, and data
blocks of different data vary greatly in data access pat-
terns or hotness. Based on the replica generation mecha-
nism in our work [33], we update the relevant definition
of ideal access popularity and actual access popularity as well
as their computing methods. After such an alteration,
this component can provide the others with API to
generate appropriate data blocks with new-coming or
existing data in power cloud storage systems.

b) Replica Deletion: After running for a certain
amount of time, some outdated replica may exist in the
system which should be set free to optimize data storage
and network transmission. There are several ways to
delete outdated replica, such as delayed deletion, offline
deletion, and marked deletion [34]. Before deletion, the
system needs to design a mechanism to decide what

kinds of replica are outdated, hence we have slightly
modified our previous work in [33] to achieve replica
deletion in PARMS.

c) Replica Placement: Based on the results of SCN-
based network traffic prediction (Section IV-B), the data
access popularity calculations and other important fac-
tors, we design a dynamic replica placement algorithm
to optimize data storage and network transmission in the
power industry. The relevant definitions and algorithms
are detailed in Section IV-D.

d) Replica Selection: Running computing tasks on
power big data processing platforms is a typical multi-
task scenario over geo-distributed DCs, and the prefer-
ences of power big processing tasks differ greatly from
each other. We develop a practical framework to trans-
form this into a multi-objective optimization problem.
The relevant definitions and algorithms are presented in
Section IV-E.

D. Replica Placement
As mentioned in Section III-A, there are some potential

patterns or a certain cyclicity in data parallel computing
across the relatively fixed geo-distributed DCs in a pow-
er big data system. The frequency of data access differs
greatly from different applications, and results in degrees
of hotness or coldness for data blocks. Therefore, we need
to make optimal decisions on where to place replica and
how to select replica, by considering replica factors and
storage locations.

Data blocks with the same access frequency may have
different popularities, which vary according to different
computing tasks. Each data block and its replicas are
associated with a queue of timestamps that record the
values of their access popularity. Specifically, we calcu-
late the popularity:

heat0(bi) = 0, r f = k× Rt + f × Ft,

heatt+1(bi) =
heatt(bi)× log2(eλ(Tt+1−Tt))−2 + r f

Z
,

(8)

where heatt+1(bi) is the updated value of the access
popularity of data block bi at time t + 1, the attenuation
function (log2(eλ(Tt+1−Tt))−2 deteriorates the replica’s ac-
cess popularity over time, with a cooling coefficient λ
, k and f consonant coefficients with k ∈ (0, 1) and
f ∈ (−1, 1), Rt the number of accesses at time t, Ft the
number of accesses probably occurring in the forecasting
sequence of I/O events over a period from SEQS, and
Z is a normalization factor.

A replication factor is assigned to each data block in
the history logs of SEQS by using maximum likelihood
estimation. After the access popularity (also called hot-
ness) of the data blocks is calculated, their relationship
is given as follows:

Req(bi) = heatT(bi|θ̂), (9)

where Rep(bi) is the replication factor of bi, and heatT(bi)
is the access popularity of bi at time T. We use the

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2919268, IEEE
Transactions on Industrial Informatics

6

maximum likelihood to estimate parameter θ ∈ Θ:

θ̂MLE = arg max
θ∈Θ

n

∑
i=1

ln(heatT(bi|θ)), (10)

Therefore, the replication factor of each data block in
a big data cloud storage system can be specified in a
granular way.

Algorithm 1 Dynamic Replica Placement
Input: LST , SN]/*A set of n data nodes*/, B/*A set of

m data blocks*/, CN/*A set of g computing nodes*/
Output: RP[n][m] //The matrix represents the layout of

m data blocks on n data nodes.
1: for l from 1 to c do
2: LSTl = {snl

j|i ∈ [i, Size(LSTl)} ← SBI(LSTl);
3: S(LSTl)← SumFreeSpace(all snl

j ∈ LSTl)
4: end for//Sort the data nodes within the same clus-

ter, and sum their free space.
5: for i from 1 to m do
6: DSpi = {b

pi
i |pi ∈ [1, p]} ← SortByTaskPre f (bi);

7: end for// Categorize data blocks by the preference
of geo-distributed computing tasks.

8: for pi from 1 to p do
9: Hpi = {Heat(bi)|bi ∈ DSpi, i ∈ [1, Size(DSpi]} ←

GetHotness(DSpi);
10: DSpi = {bi|pi ∈ [1, Size(DSpi]} ← SBH(Hpi);
11: end for//The sort of data blocks with the same DSpi

by their hotness.
12: RF = {Rep(bi)|i ∈ [1, m]} ← (H, B)
13: L = {Lτ,t|t ∈ [1, T]} ← DoForcast(fτ);// Forecast

the network traffic load
14: for pi from 1 to p do
15: for i from 1 to Size(DSpi) do
16: CanN ← SelectNode(SN, LST);//Obtain the

set of candidate data nodes
17: FNode← EstimateNetLoad(CanN, Lτ,t, Failover);
18: Update(RP[n][m], FNode)
19: end for
20: end for
21: return RP[n][m]

Thus, we have described our prediction model, the
logical groups of storage servers, the calculations of
access popularity and the replication factors. Now, we
present a dynamic replica placement algorithm that in-
creases the system throughput and data transfer rate
by optimizing the usage of network transmission across
geo-distributed DCs. Algorithm 1 is the algorithm for
replica placement.

E. Replica Selection
After replica placement, selecting the best replica to

satisfy the instantaneity of data processing demands
as discussed in Section III-A is a challenging prob-
lem in a multi-task scenario. In order to measure the
serviceability of the replica, we select three important

metrics, response time, network traffic load, and reliability.
They are weighted according to the different QoS re-
quirements of data access for a given computing task,
that is, w = (w1, w2, w3), where w1 + w2 + w3 = 1,
(0 < wi < 1, i = 1, 2, 3).

a) Matrix of Selection: a possibility of replica selec-
tion, denoted as PM. Assume that n computing nodes
of a given computing task that requests the same replica
as a set RC = {rc1, rc2, ..., rcnrc} and m data nodes that
keep the replica as a set RS = {rs1, rs2, ..., rsnrs}. The PM
of n computing nodes and m replicas of the data block
can be described as follows:

PM = RCT RS = (pmi,j)nrc×nrs . (11)

where pmi,j = 1 means that computing node rci requests
replica rsj through data node j, and pmi,j = 0(1 ≤ i ≤
nrc, 1 ≤ j ≤ nrs), otherwise. Since there is only one
replica for a request at one time, it is obvious that we
have ∑nrs

j=1 pmi,j,where1 ≤ i ≤ nrc.
b) QoS1 of response time: The performance of data

transmission between nodes is mainly determined by the
capacity of transmission network between them. vi,j is
calculated by the historical network throughout NT, the
state of running network NV, and the IPOS of storage
servers L:

vi,j =
1

α
′ × NT + β

′ × NV + γ
′ × L

, (12)

where coefficients α
′
, β
′
, and γ

′
are obtained by measur-

ing the correlations between NT, NV, and L from history
logs and current running information. Thus, the metric
matrix of QoS1 can be written as:

QoS1 = (vi,j)nrc×nrs . (13)

c) QoS2 of network traffic load: The network traffic
load between the nodes across geo-distributed DCs is
also an important factor for selecting a replica. nli,j is an
indicator of the network traffic load determined by the
current traffic load KNL and the predicted FNL from the
fitting model fτ :

nli,j =
1

µ× KNL + (1− µ)× FNL
, (14)

where µ(0 ≤ µ ≤ 1) is set by examining history logs.
Therefore, the metric matrix QoS2 is as follows:

QoS2 = (nli,j)nrc×nrs (15)

d) QoS3 of reliability: The high reliability of data
access is essential to success in completing computing
tasks, especially for those with high priority and high
frequency. The rsr

j measures the reliability that may
involve the quantitative stability of the hosting node
denoted as HP, the duration tsrv, the creation time tgen
of the replica, and the current time of system tnow. It is
calculated as:

rsr
j = ρ× HP + w× tsrv

tnow − tgen
. (16)

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2919268, IEEE
Transactions on Industrial Informatics

7

Therefore, the QoS3 of reliability can be formed as a
vector

QoS3 = (rsr
1, rsr

2, ..., rsr
nrs). (17)

e) Objective functions F1, F2, and F3: The different
values of PMnrc×nrs can be regarded as different possi-
bilities of replica selection. The values of QoS1, QoS2,
and QoS3 for each PMnrc×nrs are represented by

F1(PM) = e (PM ⊙QoS1) eT

F2(PM) = e (PM ⊙QoS2) eT

F3(PM) = e (PM ⊙QoS3) eT
(18)

where e is a vector of all ones, PM is equivalent to
PMnrc×nrs , F1(PM) is the value of QoS1 for PMnrc×nrs ,
So are F2(PM) and F3(PM). The operator ⊙ is Hadamard
product.

Algorithm 2 Replica Selection for Power Big Data Cloud
Storage
Input: w
Output: PMoptimal

1: (w1, w2, w3)←W ;
2: PM ← RCT RS//Initiate PM randomly.
3: QoS1 ← (vi,j);//The configuration of QoS1.
4: QoS2 ← (nli,j); //The configuration of QoS2.
5: QoS3 ← (rsr

j) ;//The configuration of QoS3.
6: F(PM)← (F1, F2, F3)⊙W(PM);
7: PMoptimal ← Solve(max F(PM));
8: return PMoptimal

It is desirable to select replica when each objective
function reaches the maximum with a certain value of
PM. Further, different applications can set different pref-
erences for QoSi(i = 1, 2, 3) by specifying wi. Thus, the
overall objective function for replica selection is obtained
as:

F(PM) = F1(w1 ⊙ PM) + F2(w2 ⊙ PM) + F3(w3 ⊙ PM). (19)

where we have W = (wi,j)nrc×3, and wj = (wi,j)nrc×1,
(j = 1, 2, 3).

The maximum of F(PM) is to find the best selection
matrix PMoptimal for the objective function. Thus, the
solution to replica selection is to find the approximate
optimal solution to max F(PM), and we implement a
parallel genetic algorithm (kGA) on the CUDA architec-
ture described in Petr’s work [35] to solve the problem.
The whole algorithm is given in Algorithm 2.

V. SYSTEM IMPLEMENTATION

We now describe the implementation of the main
modules of PARMS. We employ Ganglia [36] for sys-
tem monitoring, which can run customized scripts with
very low per-node overheads and high concurrence, and
integrate this with Spark or Hadoop monitoring APIs.
We also develop customized scripts to collect monitoring
data as the inputs to our algorithms, such as I/O event

logs, and the QoS preferences of computing tasks. The
collected information is managed by PostgreSQL (9.4).

The implementation of replica management policies
comprises mainly of two parts: replica placement and
replica selection. We incorporate our replica placement
and selection inside the Hadoop Distributed File System
(HDFS 2.6.0). Table I shows the main APIs of replica
management policies, the Java version is 1.7.0 55. The
APIs also work in the latter version such as 2.8.0, 2.7.4
of Hadoop HDFS and Kudu 1.4.0 Client. The Python
based client scanner API will be implemented soon.

TABLE I
REPLICA MANAGEMENT POLICIES APIS

Method Caller of Setter
public class DynamicBlockPlacementPolicy extends BlockPlacementPolicyDefault dfs.block.replicator.classname

public static final ReplicaSelection QOS PREF client.scanner

For the convenience of the operators, we adapt both
the C/S and B/S manner to develop a GUI-based client
(Microsoft Windows platform, Java, Web) and a CMD-
Line based client (mainly used in Linux, shell). The
GUI-based client provides operators with a friendly,
graphical interface to manage the PARMS. Fig. 5 shows
a screenshot of the management client of the PARMS in
Windows 7.

(a) C/S (b) B/S

Fig. 5. Screenshots of PARMS.

VI. PERFORMANCE EVALUATION
This section describes the experimental platform, the

configurations of our experiments, and reports the ex-
perimental results.

A. Experiment Platform
We conduct the experiments on the geo-distributed

power big data processing system of CSG. For the imple-
mentation and specification of the power big processing
platform in CSG, readers can refer to our published
paper [37], and a common latency-aware task scheduling
strategy is employed to dispatch data-parallel comput-
ing tasks across geo-distributed DCs [3]. Table II shows
the available bandwidths between nodes across geo-
graphically dispersed DCs in the experiments.

The computing tasks in the experiments are routine
tasks or data mining programs in power big data sys-
tems of CSG. Examples are the line losses calculation
in real time, the analysis of the power consumption
behavior of consumers, and the abnormality monitoring
and alarm in power consumption. The volume of data

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2919268, IEEE
Transactions on Industrial Informatics

8

TABLE II
GEO-DISTRIBUTED DATACENTERS OF CSG FOR PARMS

EVALUATION, L1 REPRESENTS FOR THE HEADQUARTER, L2
FOR PROVINCE BRANCHES, AND L3 FOR CITY BRANCHES

HQ(L1) GD Province(L2) Zhongshan City(L3) Foshan City(L3)
HQ(L1) 1.5Gpbs 136Mbps - -
GD(L2) - 1.2Gbps - -

Zhongshan City(L3) - 85Mbps 1.01Gbps 43.5Mbps
FoShan City (L3) - 78 Mbps - 1.1Gbps

TABLE III
CONFIGURATION OF GEO-DISTRIBUTED TASKS

Item Application Configuration
Task A Line-loss Calculation Spark, 102GB
Task B Power Consumption Analysis Hadoop, 482GB
Task C WordCount Spark, 40GB
Task D GrapX Spark, 4847571 nodes, 68993773 edges

for computing tasks on the experimental platform is
about 550G from different geo-distributed cloud system
in CSG, and some open datasets (WordCount, GraphX)
are also employed to test the overhead of PARMS intro-
duced to the systems (as Table III shown).

TABLE IV
TRAINING PARAMETERS OF LSTM IN KERAS

Para. Conf. Para. Conf.
model Sequential add1 LSTM
add2 Dense(1) dropout 0.2

batchsize 86 epochs 50
loss mae optimizer adam

TABLE V
TRAINING PARAMETERS OF SCN

Para. Conf. Para. Conf.
L max 250 tol 0.001
T max 600 Lambdas [0.5, 1, ..., 250]

batchsize 1 r [0.9, 0.99, ..., 0.999999]

B. Evaluation of SCN-Based Fitting Model
A practical traffic prediction algorithm is critical to

implement replica management policies. As discussed
in Section IV-B, the key to predicting traffic in DCFs
is the information of the execution times of tasks. An
experiment is conducted to evaluate the performance of
the proposed SCN-based fitting model. The comparison
is a competitive model based on LSTM. The configu-
ration of the training parameters is shown in Tables IV
and V. As shown in Fig. 6, the predicted results from the
SCN-based fitting model are better than the LSTM-based
one under the same computing resources and time limit.
Even if the fitting model malfunctions due to significant
changes in the fitting mappings, it costs little to rebuild
a functional one.

C. Evaluations on Read Latency by Comparing Different
Policies

The experiment evaluates the read latency over geo-
distributed DCs reduced by the proposed replica man-
agement policies. Fig. 7 plots the reading times for dif-
ferent sizes of data with respect to three kinds of replica

(a) The loss of LSTM-based
fitting model when training.

(b) The predicted execution
times from the LSTM-based.

0 20 40 60 80 100 120

L

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
M

S
E

Training RMSE

(c) The loss of SCN-based fit-
ting model when training.

0 20 40 60 80 100 120 140

Tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
O

R
M

A
L

IZ
A

T
IO

N
 O

F
 E

X
E

C
U

T
IO

N
 T

IM
E

Test Target

Model Output

(d) The predicted execution
times from the SCN-based.

Fig. 6. The performance of the prediction of execution times of tasks
by different fitting models.

management policies. From the measurement data of la-
tency among nodes, both the default policy of HDFS and
our proposed policy outperform the one without any
policies. Our replica management policies achieve better
performance, though the reading time still increases at a
linear rate. This is, however, inevitable for data transfer,
as it is limited by the network bandwidth and disk
transfer rate. Overall, our algorithm is more effective in
data access in the geo-distributed DCs. Therefore, it is
more suitable for power big data processing across geo-
distributed DCs.

0

10

20

30

40

50

60

1 2 3 4 5 10 15 20 25 30 35 40

T
im

e
(s

e
c)

The size of requesting data(MB)

PARMS-none PARMS-hdfs PARMS

Fig. 7. The reading time for data of different sizes for three kinds of
replica management policies (where the lower, the better). PARMS-none
is denoted as the system without any replica management policies,
PARMS-hdfs is the default policy, and PARMS is our approach.

D. Performance Comparisons of Dynamic Replica Placement
Strategies

This experiment aims to evaluate the resultant en-
hancement of the execution of geo-distributed comput-
ing tasks by using the replica placement strategy and

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2919268, IEEE
Transactions on Industrial Informatics

9

(a)The Average Execution Time of Jobs

0

100

200

300

400

500

600

700

800

900

50 100 150 200 250 300 350

A
v

e
ra

g
e

 E
x
e

cu
ti

o
n

 T
im

e
(m

in
u

te
s)

The number of jobs

dynamic-Strategy

default-Strategy

(a) The average execution time of jobs.

0

100

200

300

400

500

600

700

800

TasK C(WordCount) TasK D(Graphx)

T
im
e
(s
)

Pure HDFS HDFS with PARMS

(b) Job completion time on DCFs (overhead test).(a)The Average Execution Time

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9

IO
P

S
R

a
ti

o
(%

)

The statistics of different time periods

LST1

LST2

LST3

(c) The IOPS ratio of LSTs.Average Execution Time of Jobs

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9

T
h

ro
u

g
h

o
u

t
R

a
ti

o
(%

)

Time 10mins

LST1

LST2

LST3

(d) The throughout ratio of LSTs.

Fig. 8. The performance of replica placement strategies. Our approach
is denoted as dynamic-Strategy and the default as default-Strategy.

the classification of data nodes. The performance is
measured by the average execution time of jobs. In the
experiment, the data nodes are categorized into three
logical storage areas, LST1, LST2, and LST3 (the smaller
value of subscript, the better performance its associated
node is). As shown in Fig. 8a, the dynamic-Strategy takes
less than the average running time of executing jobs than
default-Strategy. From Fig. 8b, we find out that the extra
time introduced by PARMS is negligible.

We also collected the IOPS and I/O throughput infor-
mation of the logical storage areas. Fig. 8c and Fig. 8d

show the statistical results. It is clear that LST1 accounts
for approximately 62%, LST2 for 30%, and LST3 for only
8% of both IPOS and I/O throughput on average.

E. Performance Comparisons of Replica Selection Strategies
This experiment validates whether the replica selec-

tion policy can satisfy the diversity of data access de-
mands of data processing across geo-distributed DCs.
The related QoS-based replica selection in [38] is em-
ployed for the comparison. To validate our proposed
QoS-based replica selection policy, the performance of
our algorithms is compared with JPET and ENS [38].
From Fig. 9a, QoS-RS is about three quarters of default-RS
in the execution time, and achieves an obvious improve-
ment of ENS over default-RS, achieving a better result
than mr-QoS. Furthermore, we also report the fluctuation
of ENS for the algorithms within a certain period of the
system runtime, as shown in Fig. 9b. It is obvious that
QoS-RS has a better utilization of network than df-RS
and mr-QoS, though it may have an obvious jitter.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

JPET ENS

R
a

ti
o

 B
e

tw
e

e
n

S

e
le

c
ti

o
n

P
o

li
c
ie

s

df-RS mr-QoS QoS-RS

(a) The Ratio of selection policies.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

2500 5000 7500 10000 12500 15000 17500 20000 22500 25000

E
N

S
(%

)

System Runtime(ms)

df-RS mr-QoS QoS-RS

(b) ENS of selection polices during the runtime.

Fig. 9. The performance of the replica selection strategies. The default
policy is denoted as df-RS, the related QoS-based policy as mr-QoS, and
our proposed QoS-based policy as QoS-RS.

F. Job Complete Time Improvement Using PARMS
With the predicted information on the network traffic,

PARMS can optimize replica placement and selection
to promote the efficiency of data access and reduce
job complete time. Fig. 10 plots the completion time
of jobs across geo-distributed DCs. Fig. 11 plots the
completion time of Task C of different data sizes across
geo-distributed DCs, which shows the proposed replica
management system is more capable of dealing with
power big data compared with the others.

VII. CONCLUSION
With the rapid development of smart power, the real-

time processing of power big data is becoming increas-
ingly important. To achieve low latency processing un-
der the conditions of limited bandwidths and a relatively

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2919268, IEEE
Transactions on Industrial Informatics

10

0 50 100 150 200 250

Task A(12GB)

Task A(12GB)

Task B(18GB)

Task B(18GB)

Task C(15GB)

Task C(15GB)

Average job completion time (s)

Original

Optimized

Fig. 10. The average completion times of three kinds of tasks within
the system under the original setting and optimized setting of replica
policies. The job completion times are reduced by 11.82% to 12.56%
after conducting an optimization using PARMS.

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

P
e

rc
e

n
t

o
f

R
e

d
u

ce
d

 T
im

e
(%

)

Size of Task C (GB)

Fig. 11. The average completion times of Task C of different data size
within the system under the original setting and optimized setting
of replica policies. The job completion times are still reduced at a
reasonable percentage when the data size of the tasks gets bigger after
conducting an optimization using PARMS.

fixed underlying infrastructure, we designed and imple-
mented an adaptive replica management system, PARM-
S, for geo-distributed power big data storage. Based on
a near real-time SCN-based mechanism that is able to
predict network traffic, efficient replica management ap-
proaches are designed to optimize the replica placement
and selection. A series of experiments were conducted on
the platform of an electric power corporation, CSG. The
experiment results show that our replica management
policies can solve the network transmission bottleneck to
a certain degree, and increase the computing throughput
of geo-distributed power big data systems. The job com-
pletion times across geo-distributed DCs are reduced by
12.19% on average when using PARMS.

Our future work will develop adaptive replica gen-
eration and deletion mechanisms for PARMS, and fur-
ther integrate replica management policies with geo-
distributed task scheduling.

ACKNOWLEDGMENTS

This work was supported by the National Natural
Science Foundation of China (No. 61877020), the Science
and Technology Projects of Guangdong Province, China
(No. 2014B010117007, 2018B010109002), and the Science
and Technology Project of Guangzhou Municipality, Chi-
na (No. 201904010393).

REFERENCES

[1] D. He, N. Kumar, S. Zeadally, and H. Wang, “Certificateless
provable data possession scheme for cloud-based smart grid data
management systems,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 3, pp. 1232–1241, Mar. 2018.

[2] L. Jiang, L. D. Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An iot-
oriented data storage framework in cloud computing platform,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1443–
1451, Feb. 2014.

[3] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data analyt-
ics,” in Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication. ACM, Aug. 2015, pp. 421–434.

[4] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine
learning approaching LAN speeds,” in Proceedings of 14th USENIX
Symposium on Networked Systems Design and Implementation, Mar.
2017, pp. 629–647.

[5] Z. Hu, B. Li, and J. Luo, “Time- and cost- efficient task scheduling
across geo-distributed data centers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 3, pp. 705–718, Mar. 2018.

[6] S. Sun, W. Yao, and X. Li, “DARS: A dynamic adaptive replica
strategy under high load Cloud-P2P,” Future Generation Computer
Systems, vol. 78, pp. 31–40, Jan. 2018.

[7] Y. Li, Y. Wang, and L. Jin, “Design of electric power data
management system based on Hadoop,” in Proceedings of 4th
International Conference on Machinery, Materials and Information
Technology Applications. Atlantis Press, Jan. 2017, pp. 1090–1093.

[8] K. Jia, Y. Chen, T. Bi, Y. Lin, D. Thomas, and M. Sumner,
“Historical-data-based energy management in a microgrid with
a hybrid energy storage system,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 5, pp. 2597–2605, Oct. 2017.

[9] W. Xiao, W. Bao, X. Zhu, and L. Liu, “Cost-aware big data
processing across geo-distributed datacenters,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 11, pp. 3114–3127,
Nov. 2017.

[10] D. Wang and M. Li, “Stochastic Configuration Networks: Funda-
mentals and Algorithms,” IEEE Transactions on Cybernetics, vol. 47,
no. 10, pp. 3466–3479, Oct. 2017.

[11] X. D. Zhong, Yuand Huang and D. Liu, “NoSQL storage solution
for massive equipment monitoring data management,” Computer
Integrated Manufacturing Systems, vol. 12, pp. 3008–3016, Nov.
2013.

[12] J. Zhu, E. Zhuang, J. Fu, J. Baranowski, A. Ford, and J. Shen,
“A framework-based approach to utility big data analytics,” IEEE
Transactions on Power Systems, vol. 31, no. 3, pp. 2455–2462, Aug.
2016.

[13] J. Chen, N. Liu, Y. Chen, and W. Qiu, “Power big data platform
based on hadoop technology,” in Proceedings of 6th International
Conference on Machinery, Materials, Environment, Biotechnology and
Computer. Atlantis Press, Jan. 2016, pp. 571–576.

[14] M. H. Yaghmaee, M. Moghaddassian, and A. Leongarcia, “Au-
tonomous two-tier cloud-based demand side management ap-
proach with microgrid,” IEEE Transactions on Industrial Informatics,
vol. 13, no. 3, pp. 1109–1120, Oct. 2017.

[15] H. Wang, L. Chen, K. Chen, Z. Li, Y. Zhang, H. Guan, Z. Qi, D. Li,
and Y. Geng, “FLOWPROPHET: Generic and accurate traffic pre-
diction for data-parallel cluster computing,” in Proceedings of IEEE
35th International Conference on Distributed Computing Systems, Jun.
2015, pp. 349–358.

[16] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, K. Karana-
sos, J. Padhye, and G. Varghese, “WANalytics: Geo-distributed
analytics for a data intensive world,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data,
May 2015, pp. 1087–1092.

[17] K. Kloudas, M. Mamede, N. M. Preguica, and R. Rodrigues, “Pix-
ida: Optimizing data parallel jobs in wide-area data analytics,”
Very Large Data Bases, vol. 9, no. 2, pp. 72–83, Oct. 2015.

[18] Y. Liu, W. Wei, and R. Zhang, “DESRP: An efficient differen-
tial evolution algorithm for stochastic demand-oriented resource
placement in heterogeneous clouds,” Future Generation Computer
Systems, vol. 88, pp. 234–242, May 2018.

[19] K. Muralidhar and N. P. Bharathi, “An optimal replica reloca-
tion scheme for improving service availability in mobile ad hoc
networks,” in Proceedings of 2014 IEEE International Conference on

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2919268, IEEE
Transactions on Industrial Informatics

11

Computational Intelligence and Computing Research. IEEE, Dec.
2014, pp. 1–4.

[20] S. Long, Y. Zhao, and W. Chen, “A three-phase energy-saving s-
trategy for cloud storage systems,” Journal of Systems and Software,
vol. 87, pp. 38–47, Jan. 2014.

[21] X. Dai, X. Wang, and N. Liu, “Optimal scheduling of data
intensive applications in cloud based video distribution services,”
IEEE Transactions on Circuits & Systems for Video Technology, vol. 27,
no. 99, pp. 73–83, May 2017.

[22] A. De Salve, B. Guidi, P. Mori, L. Ricci, and V. Ambriola, “Privacy
and temporal aware allocation of data in decentralized online
social networks,” in Proceedings of 12th International Conference on
Green, Pervasive, and Cloud Computing. Springer, May 2017, pp.
237–251.

[23] C. Guerrero, I. Lera, B. Bermejo, and C. Juiz, “Multi-objective op-
timization for virtual machine allocation and replica placement in
virtualized Hadoop,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 11, pp. 2568–2581, Nov. 2018.

[24] W. Chen, I. Paik, and Z. Li, “Tology-aware optimal data placement
algorithm for network traffic optimization,” IEEE Transactions on
Computers, vol. 65, no. 8, pp. 2603–2617, Aug. 2016.

[25] Y. Wang, Q. Chen, C. Kang, Q. Xia, and M. Luo, “Sparse and re-
dundant representation-based smart meter data compression and
pattern extraction,” IEEE Transactions on Power Systems, vol. 32,
no. 3, pp. 2142–2151, Aug. 2017.

[26] N. Altiparmak and A. Tosun, “Multithreaded maximum flow
based optimal replica selection algorithm for heterogeneous stor-
age architectures,” IEEE Transactions on Computers, vol. 65, no. 5,
pp. 1543–1557, May 2016.

[27] V. Nagarajan and M. A. M. Mohamed, “A prediction-based dy-
namic replication strategy for data-intensive applications,” Com-
puters & Electrical Engineering, vol. 57, pp. 281–293, Jan. 2017.

[28] M. C. Hung and D. L. Yang, “An efficient fuzzy c-means clustering
algorithm,” in Proceedings of 2001 IEEE International Conference on
Data Mining, Nov. 2001, pp. 225–232.

[29] Y. Peng, K. Chen, G. Wang, W. Bai, Y. Zhao, H. Wang, Y. Geng,
Z. Ma, and L. Gu, “Towards comprehensive traffic forecasting in
cloud computing: Design and application,” IEEE/ACM Transac-
tions on Networking, vol. 24, no. 4, pp. 2210–2222, Aug. 2016.

[30] T. P. Oliveira, J. S. Barbar, and A. S. Soares, “Computer network
traffic prediction: A comparison between traditional and deep
learning neural networks,” International Journal of Big Data Intelli-
gence, vol. 3, no. 1, pp. 28–37, Sep. 2016.

[31] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. M. Liu, “LSTM net-
work: A deep learning approach for short-term traffic forecast,”
IET Intelligent Transport Systems, vol. 11, pp. 68–75, Mar. 2017.

[32] S. Zaman and D. Grosu, “A distributed algorithm for the replica
placement problem,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 9, pp. 1455–1468, Sep. 2011.

[33] C. Q. Huang, Y. Li, Y. Tang, and R. H. Huang, “A research
on replica management of cloud storage system for educational
resources,” Journal of Beijing University of Posts and Telecommuni-
cations, vol. 2, pp. 93–97, Feb. 2013.

[34] T. T. Liu, C. Li, Q. C. Hu, and G. G. Zhang, “Multiple-replicas
management in the cloud environment,” Journal of Computer
Research & Development, vol. 48, no. S3, pp. 254–260, Sep. 2011.

[35] P. Pospichal, J. Jaros, and J. Schwarz, “Parallel genetic algorithm
on the CUDA architecture,” in Proceedings of European conference on
the applications of evolutionary computation, Apr. 2010, pp. 442–451.

[36] M. L Massie, B. N Chun, and D. Culler, “The Ganglia distribut-
ed monitoring system: Design, implementation and experience,”
Parallel Computing, vol. 30, pp. 817–840, Jul. 2004.

[37] Q. Huang, J. Huang, X. Wang, C. Huang, and X. Heng, “Big
data based service platform and its typical applications of electric
power industries,” in Proceedings of 2nd International Conference on
Energy, Power and Electrical Engineering, Nov. 2017, pp. 184–191.

[38] A. Jaradat, A. H. Muhamad Amin, M. Zakaria, and K. Golden,
“An enhanced grid performance data replica selection scheme
satisfying user preferences quality of service,” European Journal
of Scientific Research, vol. 73, pp. 527–538, Mar. 2012.

Changqin Huang received his Ph.D. degree in
computer science and technology from Zhejiang
University, Hangzhou in 2005. Currently, he
is a Professor at Zhejiang Normal University,
Jinhua, China. He was a Visiting Scientist at
Zhejiang University, and an Honorary Visiting
Professor at La Trobe University. His research
interests include service computing, big data,
and semantic information retrieval. He is an
awardee of ”Pearl River Scholar”.

Dr. Huang is a Senior Member of the China
Computer Federation, and a member of ACM and IEEE. He has served
as a Reviewer for several conferences and journals.

Qionghao Huang received his master degree
of Software Engineering in South China Nor-
mal University in 2018. And now he is a s-
tudent in School of Information Technology
in Education, South China Normal University,
Guangzhou, China. His main research interests
include cloud computing and deep learning
methods. He is a student member of CCF and
IEEE.

Dianhui Wang (M’03-SM’05) was awarded a
Ph.D. from Northeastern University, Shenyang,
China, in 1995. From 1995 to 2001, he worked
as a Postdoctoral Fellow with Nanyang Techno-
logical University, Singapore, and a Researcher
with The Hong Kong Polytechnic University,
Hong Kong, China. He joined La Trobe Uni-
versity in July 2001 and is currently a Reader
and Associate Professor with the Department of
Computer Science and Information Technology,
La Trobe University, Australia. Since 2010, he

has been a visiting Professor at The State Key Laboratory of Synthetical
Automation of Process Industries, Northeastern University, China.
His current research interests include industrial artificial intelligence,
industrial big data oriented machine learning theory (deep stochastic
configuration networks, http://deepscn.com) and its applications in
process industries, intelligent sensing technology and power systems.

Dr Wang is a Senior Member of IEEE, and serving as an Asso-
ciate Editor for IEEE Transactions On Neural Networks and Learning
Systems, IEEE Transactions On Cybernetics, Information Sciences, and
WIREs Data Mining and Knowledge Discovery.

