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Abstract

This paper develops a randomized approach for incrementally building deep
neural networks, where a supervisory mechanism is proposed to constrain the
random assignment of the weights and biases, and all the hidden layers have direct
links to the output layer. A fundamental result on the universal approximation
property is established for such a class of randomized leaner models, namely deep
stochastic configuration networks (DeepSCNs). A learning algorithm is presented
to implement DeepSCNs with either specific architecture or self-organization. The
read-out weights attached with all direct links from each hidden layer to the output
layer are evaluated by the least squares method. Given a set of training examples,
DeepSCNs can speedily produce a learning representation, that is, a collection of
random basis functions with the cascaded inputs together with the read-out weights.
An empirical demonstration on a function approximation and a case study are
carried out to demonstrate some properties of the proposed deep learner model.

1 Introduction

In the past decade, deep neural networks (DNNs) have received considerable attention due to its
great potential for dealing with computer vision, pattern recognition, natural language processing, etc.
[1–3]. The success of deep learning is attributed to its representation capability for visual data [4, 5].
In view of some empirical evidence, DNNs are becoming increasingly popular because of a hypothesis
that a deep learner model can be more effective and efficient in data representation aspect, compared
to shallow models. It seems that DNNs have good potential in learning higher-level abstractions (or
multiple levels of features), which sounds difficult for models with shallow architecture. A formal
analysis on the representation power and learning complexity of DNNs can be found in [6]. In short,
the community has reached a common sense that DNNs are much more expressive than the shallow
ones.

DNNs became so popular due to their learning representation power for complex data, however, there
are some issues in the design and implementation. For instance, how to smartly choose the architecture
of the DNN, improve the learning speed and reduce the computational burden. Usually, one configures
a DNN manually based on the trial-and-error performance without technical guidance, which may be
time-consuming and potentially impacts the effectiveness of the resulting model. Indeed, DNNs with
moderate depth but fewer number of hidden nodes at each layer cannot exhibit sufficient learning
ability, while a large sized architecture (i.e. with quite a few layers and hidden nodes) may cause
over-fitting that degrades the generalization capability. In [7], Alvarez and Salzmann introduced an
approach to automatically determine the number of nodes at each layer of the DNN by using group
sparsity regularizer. Their method can result in a compact width setting for each layer, but with the
prerequisite that the network’s depth is determined in advance. Except for the architecture setting
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problem, fast training algorithms for DNNs are significant as well. As can be seen that training
multilayer perceptrons by using the back-propagation algorithm suffers from several issues such
as the weight initialisation, local minima and sensitivity of the learning performance with respect
to the learning rate setting. Empirically, this gradient-based learning method could not produce
meaningful or interpretable internal representations from each hidden outputs [8]. Therefore, some
advanced deep learning techniques have been developed to overcome these obstacles [9]. To the best
of our knowledge, there are few deep learning techniques in literature addressing the design and fast
implementation simultaneously. In [10], the authors explored the learning capability of autoencoders
with random weights scoped in [-1,1], showing the value of the randomized methods in building
DNNs with much less computational complexity. Recently, some theoretical results on the universal
classification strategy using DNN with random weights were reported in [11], where the authors
mathematically showed that DNNs with random Gaussian weights perform a distance-preserving
embedding of the data. Motivated by constructive approaches for building shallow neural networks
[12, 13] and randomized methods for fast learning [14–21], we make efforts to develop randomized
learner model with deep architecture under the philosophy: ‘one should walk on the earth rather than
in the air’!

This paper further develops the stochastic configuration networks (SCNs) proposed in [22] and
establishes the universal approximation property for its deep version, termed as DeepSCNs. From
an algorithmic perspective, a DeepSCN starts with a small sized network (e.g, one hidden layer
with one hidden node), and stochastically configures its nodes for the current layer until a certain
termination criterion is met, then continues to add the next hidden layer by repeating the same
procedures, and keeps proceeding to deeper layers until an acceptable error tolerance is achieved. As
the constructive process proceeds, the hidden parameters are randomly assigned under a supervisory
mechanism, while the read-out weights linking the hidden nodes to the output nodes are calculated
by the least squares method [23]. Our basic idea behind the DeepSCN is to successively approximate
a target function, and the random basis functions for each hidden layer are generated under a set of
inequality constraints. Once starting to add a new hidden layer, the obtained random bases remain
unchanged and the last error function acts as a new target function to be approximated. An immediate
benefit from DeepSCNs lies in the links between all hidden nodes and the output nodes, which allow
end-users to manipulate layer-wise approximations, in other words, one can make options to use
these nodes freely after off-line building an accurate DeepSCN model. Furthermore, DeepSCN can
produce more rich learning representations, which provide an alternative solution for fast building
autoencoders. In a nutshell, as results of deep learning for DeepSCNs, a set of data dependent random
basis functions are generated for signal representation with piece-wise ‘resolutions’.

The remainder of this paper is organized as follows: Section 2 details our DeepSCNs framework with
theoretical fundamentals on the universal approximation property and algorithm description. Section
3 reports some simulation results with comparisons against SCNs. Section 4 concludes this paper
and provides some further research directions.

2 Deep Stochastic Configuration Networks

This section provides some fundamentals of DeepSCNs, including a theoretical result on the universal
approximation property, algorithm description and some technical remarks.

2.1 Universal Approximation Property

Let L2(D) denote the space of all Lebesgue-measurable vector-valued functions F =
[f1, f2, . . . , fm] : Rd → Rm on a compact set D ⊂ Rd, with the L2 norm defined as

‖F‖ :=

 m∑
q=1

∫
D

|fq(x)|2dx

1/2

<∞, (1)

and inner product defined as

〈F ,G〉 :=

m∑
q=1

〈fq, gq〉 =

m∑
q=1

∫
D

fq(x)gq(x)dx, (2)
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where G = [g1, g2, . . . , gm] : Rd → Rm.

Given a target function F : Rd → Rm, suppose a DeepSCN with n hidden layers and each layer has
Lk hidden nodes (k = 1, 2, . . . , n), has been constructed, that is,

F (n)
Sn

(x) =

n∑
k=1

Lk∑
j=1

β
(k)
j φk,j

(
x(k−1);w

(k−1)
j , b

(k−1)
j

)
, (3)

where Sn = {L1, L2, . . . , Ln} represents the set of the hidden node numbers, w(k−1)
j and b(k−1)j

stand for the hidden parameters within the k-th hidden layer, φk,j is the activation function used in the

k-th hidden layer, x(0) = x and x(k) = Φ
(
x(k−1);W (k−1), B(k−1)

)
= [φk,1, φk,2, . . . , φk,Lk

],

with W (k−1) = [w
(k−1)
1 , w

(k−1)
2 , . . . , w

(k−1)
Lk

] and B(k−1) = [b
(k−1)
1 , b

(k−1)
2 , . . . , b

(k−1)
Lk

],

k = 1, 2, . . . , n. Then, the residual error function is defined by E(n)Sn
= F − F (n)

Sn
=

[E(n)Sn,1
, E(n)Sn,2

, . . . , E(n)Sn,m
].

Denoted by F (n)
p (x) as a DeepSCN model with p nodes at the n-th layer, that is,

F (n)
p (x) =

n∑
k=1

p∑
j=1

β
(k)
j φk,j

(
x(k−1);w

(k−1)
j , b

(k−1)
j

)
, (4)

where p = 1, 2, ..., Ln. Specifically, E(1)0 = F and E(n+1)
0 = E(n)Ln

, n = 1, 2, . . . .

Theorem 1. Suppose that span(Γ) is dense in L2 space and ∀φ ∈ Γ, 0 < ‖φ‖ < c for some
c ∈ R+. Given 0 < r < 1 and a nonnegative decreasing sequence {µl} with liml→+∞ µl = 0 and
µl < (1− r). For n = 1, 2 . . ., and j = 1, 2, . . . , Ln, denoted by

δ
(n)
j,q = (1− r − µj)‖E(n)j−1,q‖

2, q = 1, 2, . . . ,m. (5)

Stochastically configuring the j-th hidden node φn,j within the n-th hidden layer (j = 1, 2, . . . , Ln)
to satisfy the following inequalities:

〈E(n)j,q , φn,j〉
2 ≥ c2δ(n)j,q , q = 1, 2, . . . ,m. (6)

Fix the random basis functions φn,1, φn,2, . . . , φn,Ln
and start to add the first hidden node φn+1,1 in

the (n+ 1)-th hidden layer according to the following inequalities

〈E(n)Ln,q
, φn+1,1〉2 ≥ c2δ(n)Ln,q

, q = 1, 2, . . . ,m. (7)

Keep adding new hidden nodes within the (n+1)-th hidden layer based on (6), followed by generating
the first hidden node in a new hidden layer via (7). After adding one hidden node (either in the present
hidden layer or starting a new hidden layer), the read-out weights are evaluated by the least squares
method, that is,

β∗ = arg min
β
‖F −

n∑
k=1

Lk∑
j=1

β
(k)
j φk,j‖2. (8)

Then, we have limn→+∞ ‖F − F (n)
Sn
‖ = 0, where F (n)

Sn
is defined by (3).

Proof. It is easy to obtain that

‖E(n)Ln
‖2 ≤ (r + µLn)‖E(n)Ln−1‖

2. (9)

The error after adding one hidden node in the (n+ 1)-hidden layer can be expressed as

‖E(n+1)
1 ‖2 = ‖E(n)Ln

− β(n+1)
1 φn+1,1‖2, (10)

where φn+1,1 and β(n+1)
1 are obtained by using (7) and (8) with , respectively. To identify the

relationship between E(n+1)
1 and E(n)Ln

, we denote β̄(n+1)
1 = [β̄

(n+1)
1,1 , . . . , β̄

(n+1)
1,m ]T, where

β̄
(n+1)
1,q =

〈E(n)Ln,q
, φn+1,1〉

‖φn+1,1‖2
, q = 1, 2, . . . ,m, (11)
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Replacing β(n+1)
1 by β̄(n+1)

1 , with β̄(n+1)
1,q evaluated by (11), we have

‖E(n+1)
1 ‖2 ≤ ‖E(n)Ln

− β̄(n+1)
1 φn+1,1‖2

= ‖E(n)Ln
‖2 −

∑m
q=1〈E

(n)
Ln,q

, φn+1,1〉2

‖φn+1,1‖2

≤ ‖E(n)Ln
‖2. (12)

With the help of (9) and (12), we can obtain

‖E(n+1)
Ln+1

‖2 ≤ ‖E(n+1)
1 ‖22 ≤ ‖E

(n)
Ln
‖2

≤
Ln∏
k=2

(r + µk)‖E(n)1 ‖2

≤ (r + µ1)(
∑n

k=1 Lk)−1‖E(1)1 ‖2, (13)

which implies the universal approximation property because r + µ1 < 1 and
∑n
k=1 Lk turns to be

infinity as n keeps increasing. This completes the proof.

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 1: A typical DeepSCN with the architecture: 2-3-2-1, i.e., two input nodes, two hidden layers
(three hidden nodes in the first hidden layer, two hidden nods in the second hidden layer), and one
output node. Read-out weights (trainable) are shown as red dashed lines, whilst hidden weights and
biases (stochastically configured) are shown as fixed lines.

The idea of learning internal representation can be traced back to 80s [8]. In the past decades, many
exciting researches and progresses have been reported in [5], where attempts are made to meet
the following three objectives: fidelity, sparsity and interpretability. Learner models can appear
in different forms but essentially they must share the universal approximation property so that the
fidelity can be achieved [24, 25]. Theorem 1 ensures that DeepSCNs fit the essential prerequisite well
for learning representation. Due to the nature of DeepSCNs, learning representation becomes quite
straightforward but less interpretable. The outcomes from the first hidden layer contain two parts:
a set of random basis functions with the original inputs, and associated read-out weights between
the first hidden layer and the output layer. Apparently, one can define a learning representation from
the first hidden layer, which characterizes the main feature of the target function. Next, the outputs
from the first hidden layer, as a new set of inputs, are fed into the next hidden layer to constructively
generate a set of random basis functions. Again, one can obtain a refined learning representation
from the second hidden layer. This procedure keeps going on until some termination criterion is
satisfied. Figure 1 shows a typical DeepSCN with n = 2, L1 = 3, and L2 = 2, d = 2, m = 1.

It should be highlighted that DeepSCNs advocate fully connections between each hidden layer and
the output layer, which supports a multi-resolution of learning representation rather than using only
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the compositional expression from the last hidden layer as done in the standard multilayer perceptrons.
Such a learning representation offers end-users more flexibility, for instance, some nodes at certain
layer can be discarded according to some criteria, leading to a new learning representation with
sparsity. After generating the random basis functions, we can employ some regularization models
such as Lasso [26] to refine the learning representation, which can be done in the layer-wise manner
or at one pass. In essence, the universal approximation property ensures the capacity of DeepSCNs for
both data modelling and signal representation. Thus, DeepSCNs can be employed as either predictive
models or feature extractors.

2.2 Algorithm Description

Given a training dataset with inputs X = {x1, x2, . . . , xN}, xi = [xi,1, . . . , xi,d]
T ∈ Rd and

outputs T = {t1, t2, . . . , tN}, where ti = [ti,1, . . . , ti,m]T ∈ Rm, i = 1, . . . , N . Denote
E(n)Ln−1 = E(n)Ln−1(X) = [E(n)Ln−1,1(X), . . . , E(n)Ln−1,m(X)]T as the corresponding residual error

vector before the Ln-th new hidden node of the n-th hidden layer is added, where E(n)Ln−1,q(X) =

[E(n)Ln−1,q(x1), . . . , E(n)Ln−1,q(xN )] ∈ RN , q = 1, 2, . . . ,m.
After adding the Ln-th hidden node in the n-th hidden layer, we get

h
(n)
Ln

:= h
(n)
Ln

(X) = [φn,Ln
(x

(n−1)
1 ), . . . , φn,Ln

(x
(n−1)
N )]T, (14)

where φn,Ln
(x

(n−1)
i ) is used to simplify φn,Ln

(x
(n−1)
i ;w

(n−1)
j , b

(n−1)
j ), and x

(0)
i = xi =

[xi,1, . . . , xi,d]
T, x(n−1)i = Φ(x(n−2);W (n−1), B(n−1)) for n ≥ 2.

Let H(n)
Ln

= [h
(n)
1 , h

(n)
2 , . . . , h

(n)
Ln

] represent the hidden layer output matrix and denote a temporary

variable θ(n)Ln,q
(q = 1, 2, . . . ,m) to make it convenient in the followed algorithm description

(pseudo-codes).

θ
(n)
Ln,q

=
〈E(n)Ln−1,q, h

(n)
Ln
〉2l2

〈h(n)Ln
, h

(n)
Ln
〉l2

− (1− r)〈E(n)Ln−1,qE
(n)
Ln−1,q〉l2 , (15)

where 〈·, ·〉l2 denotes the dot product and we omit the argument X in E(n)Ln−1,q and h(n)Ln
.

Whilst building the DeepSCN model, we need to take the over-fitting into account. Thus, in practice, a
validation dataset is used to monitor the learning process and prevent the occurrence of the over-fitting.
In this way, an appropriate architecture of the DeepSCN model can be automatically determined.
Alternatively, end-users can specify the number of nodes for each layer and also the number of the
layers in advance. However, this pre-defined configuration method has no guarantee to perform a
good learning representation.

To speed up the implementation of DeepSCNs, the generation of the random basis functions at each
hidden layer can be done in batch mode. That is, we can select a set of generative nodes that meet the
constraint (6). Also, for data modelling tasks with high-dimensional outputs, the condition (6) should
be replaced by satisfying θ(n)Ln

=
∑m
q=1 θ

(n)
Ln,q
≥ 0. This relaxed constraint on the random assignment

of the weights and biases still ensures the universal approximation property.

For regression problems, one may be more interested in the predictability of a learner model rather
than its learning capability. Unfortunately, it is almost impossible to directly establish the correlation
between these two performance. That is, a better learning performance does not always imply a
sound generalization. In this regard, consistency concept becomes a meaningful metric to assess the
goodness of learning machines. From our hands-on experience, DeepSCNs demonstrate favourable
consistency performance. For classification problems, DeepSCNs can be used directly to put a class
label for a testing data by using linear discriminate analysis. Alternatively, we can use DeepSCNs
as feature extractors to generate a collection of samples in the DeepSCN feature space, followed by
using variety of feature-classifiers to implement classification.

3 Empirical Demonstration

This section reports some simulation results to illustrate advantages of DeepSCNs compared to SCNs
in terms of the approximation accuracy and algebraic property (rank deficiency) of the joint hidden
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Algorithm 1: Deep Stochastic Configuration Networks
Input :Training inputs X = {x1, x2, . . . , xN}, xi ∈ Rd, outputs T = {t1, t2, . . . , tN}, ti ∈ Rm; The

maximum number of hidden layers, M ; The maximum number of hidden nodes within the n-th hidden
layer, L(n)

max, 1 ≤ n ≤M ; The expected error tolerance ε; The maximum times of random
configuration Tmax; Two sets of scalars Υ= {λ1, . . . , λend},R = {r1, . . . , rend}

Output :A DeepSCN Model

1 Initialization: E(1)0 := [t1, t2, . . . , tN ]T,H,Ω,W := [ ];
2 while n ≤M and ‖E(1)0 ‖F > ε do
3 while Ln ≤ L(n)

max and ‖E(1)0 ‖F > ε do
4 for λ ∈ Υ do
5 for r ∈ R do
6 for k = 1, 2 . . . , Tmax do
7 Randomly assign ω(n−1)

Ln
and b(n−1)

Ln
from [−λ, λ]d and [−λ, λ];

8 Calculate h(n)
Ln

, θ(n)
Ln,q by (14), (15);

9 if min{θ(n)
Ln,1, . . . , θ

(n)
Ln,m} ≥ 0 then

10 Save w(n−1)
Ln

and b(n−1)
Ln

in W , θ(n)
Ln

=
∑m

q=1 θ
(n)
Ln,q in Ω;

11 else
12 go back to Step 5;
13 end
14 end
15 if W is not empty then
16 Find w(n−1)∗

Ln
, b(n−1)∗

Ln
maximizing θ(n)

Ln
, set H(n)

Ln
=[h

(n)∗
1 , . . . , h

(n)∗
Ln

];
17 Break (go to Step 22);
18 else
19 Continue: go to Step 5;
20 end
21 end
22 end
23 SetH :=[H, H(n)

Ln
], β∗=H†T , E(n)

Ln
=Hβ∗−T , E(n) = E(n)

Ln
;

24 Renew E(1)0 := E(n)
Ln

, Ln := Ln + 1;
25 end
26 Set E(n+1)

0 = E(n), Ω,W = [ ];
27 end
28 Return: β∗,ω∗,b∗

output matrix. Here, we also provide a robustness analysis on DSCN algorithm with respect to the
learning parameter setting. The following real-valued function defined over [0,1] is employed in the
simulation study:

f(x) = 0.2e−(10x−4)
2

+ 0.5e−(80x−40)
2

+ 0.3e−(80x−20)
2

.

In this study, we take 1000 points (randomly generated) as the training data and another 1000
points (randomly generated) as the test data in our experiments. The sigmoidal activation function
g(x) = 1/(1 + exp(−x)) is used for all hidden nodes.

3.1 Approximation Capability

Figure 2 depicts the training and test performance, respectively, where L = 200 for SCN, M = 4 and
L
(n)
max = 50 for each layer in DeepSCN. It is clear that DeepSCN approximates the target function

within a given tolerance more faster than SCN. Also, the consistency relationship between learning
and generalization can be observed. As a matter of fact, both shallow and deep SCNs share this nice
consistency property. It should be clearly pointed out that our statement on the consistency comes
from a large number of experimental observations, and there is no theoretical justification available
so far. Figure 2 shows three independent trials, which indicate that DeepSCN outperforms SCN
in terms of effectiveness. In this test, we set rk = 1 − 10−k, k = 1, 2, ..., 7 in Step 16 of DSCN
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algorithm. With different settings, the performance on both effectiveness and consistency could be
further verified by the results from Figure 4.
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Figure 2: Effectiveness and consistency

3.2 Algebraic Property of the Hidden Output Matrix

In a common sense, a learner model’s capacity can be measured by using a trade-off metric over the
learning and generalization performance. In addition, we may evaluate the capacity of a learner model
by looking at the interpretability. In fact, it is always desirable to have a learner model with balanced
performance among learning, generalization and model complexity. For DeepSCN framework, due
to the specific configuration in model building, the model capacity is not only associated with the
number of nodes for each hidden layer, but also closely related to some algebraic properties of the
hidden output matrix. Technically, we found that the degree of the rank-deficiency of the joint hidden
output matrix is proportional to the level of redundancy. To do so, the degree of rank-deficiency is
computed by p = rank(H)/

∑j
n=1 Ln, whereH represents the hidden output matrix composed of

all existing hidden nodes,
∑j
n=1 Ln represents the (current) number of hidden nodes after adding

j(j = 1, 2, 3, 4) hidden layers and Lj hidden nodes 1 ≤ Lj ≤ 25. The values of p for both SCN
and DeepSCN are plotted in Figure 3(a), in which it can be observed that H of DeepSCN is with
higher rank even when the number of hidden nodes is approaching to 100, however, the degree of the
rank-deficiency for the SCN becomes much more higher as L becomes larger. Note that the results
from DeepSCN reported in Figure 3(a) were obtained with a fixed architecture, i.e., 4 hidden layers
with 25 nodes for each. Figure 3(b) depicts six curves of the rank-deficiency for both the SCNs and
DeepSCNs, where M = 4 and L(n)

max = 50 for each hidden layer are used in the DSCN algorithm.
From these observations, we can infer that the DeepSCN models have much less redundant basis
functions compared against the SCN models.

3.3 Robustness Analysis

In general, robustness refers to the ability of a system to maintain its performance whilst subjected to
noise in external inputs, changes to internal structure and/or shifts in parameter setting. Obviously,
the quality or performance of DeepSCNs depends upon the parameter setting. In order to investigate
the robustness of DSCN algorithm, in this paper we limit our study on the learning parameter
r with 11 values only. A similar robustness analysis on another set of key learning parameters
Υ= {λmin :∆λ :λmax} is not reported here. Figure 4 shows the training and test performances for
both SCN and DeepSCN with three different settings of r, that is, randomly taking 10 real numbers
from the open interval (0.9, 0.99) and arranging them in increasing order to form a set r1, and set
r = {r1, 1 − 10−6}. As can be seen that both SCN and DeepSCN perform robustly against this
learning parameter setting (i.e., not sensitive to the uncertain sequence r). In this case, we fixed the
architecture of DeepSCN with 4 hidden layers and 25 nodes for each. A remarkable drop-down can
be observed after completing the construction of the first layer, which clearly exhibits the advantage
of DeepSCN over SCN.
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Figure 3: (a) SCN with L = 1 : 100 and DeepSCN with M = 4, 1 ≤ Lj ≤ 25, j = 1, 2, 3, 4; (b)
SCN with L = 1 : 200 and DeepSCN with M = 4, 1 ≤ Lj ≤ 50, j = 1, 2, 3, 4
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Figure 4: Robustness analysis on the learning parameter setting

4 A Case Study: Rotation Angles Predication for Handwritten Digits

This section further investigates the merits of the proposed DeepSCN by predicting the angles of
rotation of handwritten digits. We have a collection of synthetic handwritten digits containing 5000
training and 5000 test images of digits with corresponding angles of rotation. Each image represents
a rotated digit in grayscale and of normalized size (28× 28). Figure 5 displays 16 random sample
training digits, retrieved from Neural Network Toolbox in MATLAB R2017b.

To demonstrate the advantages of DeepSCN over SCN framework, we employ two kinds of evaluation
metric in the performance comparison: (i) The Percentage of Predictions within an Acceptable error
margin (PPA); and (ii) The root-mean-square error (RMSE) of the predicted and actual angles of
rotation. In particular for measuring PPA, we need to calculate the prediction error between the
predicted and actual angles of rotation, followed by counting the number of predictions within an
acceptable error margin from the true angles. In our experiments, we set the threshold to be 10
degrees. Therefore, the PPA value within this threshold can be obtained by

PPA =
#{|Prediction Error| < 10}
Number of Sample Images

.

It is logical to think that higher PPA and/or lower RMSE values can reflect a better capability on
this regression task. In Table I, we summarize the training and test results for both DSCN and SCN
to illustrate the superiority of our developed DeepSCN framework. Specifically, two options for
the architecture setting are examined, that is, L = 1000 for SCN, L1 = L2 = L3 = L4 = 250 for
DSCN, and L = 2000 for SCN, L1 = L2 = L3 = L4 = 500 for DSCN, respectively. As can be
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Figure 5: Samples of Handwritten Digits with Angles of Rotation

Table 1: Performance Comparison

Algorithms
PPA (%) RMSE

Training Test Training Test

DSCN1 82.21 65.21 7.0265 14.8231
SCN1 78.14 60.35 7.5623 15.9176

DSCN2 84.73 66.36 5.2324 12.0971
SCN2 80.12 60.00 5.6797 14.7775

L = 1000 for SCN1, L1= L2= L3= L4= 250 for DSCN1

L = 2000 for SCN2, L1= L2= L3= L4= 500 for DSCN2

seen in Table I, DSCN outperforms SCN in these two cases with higher PPA and lower RMSE values.
It should be noted that all the results shown here are the averaged values based on five independent
trials. Based on our experience, their standard deviations have no significant difference, so we omit
this information here without any confusion.
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(a) SCN: L = 2000
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(b) DSCN: L1 = L2 = L3 = L4 = 500

Figure 6: Display Box Plot of Residuals for Each Digit Class

In Figure 6, we use the box-and-whisker diagram to show the difference between DSCN and SCN on
residual distribution for test images (for each digit class). Intuitively and obviously, DSCN works
much more favorably than SCN as there are less records with abnormal degree error, as marked in
red plus symbol. In particular, for the digit ’1’, ’2’, ’5’, ’7’, ’8’, DSCN shows more robustness in
predicting the associated angles of rotation. The digit classes with highest accuracy have a mean close
to zero and little variance, such as ’3’ and ’6’. The learner model produced by SCN is more prone
to result in larger predicted angles, i.e, a plenty of examples with degree error outside the interval
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[-60,60]. With consideration of length limitation, we only provide the results of the architecture
setting with L = 2000 for SCN, L1 = L2 = L3 = L4 = 500 for DSCN. Based on our simulations,
similar findings can be found in the case that L = 1000 for SCN, L1 = L2 = L3 = L4 = 250 for
DSCN.

(a) Original (b) Corrected by SCN (c) Corrected by DSCN

Figure 7: Demonstration of Original Digits and Their Corrected Rotations: (b) L = 2000 for SCN;
(c) L1 = L2 = L3 = L4 = 500 for DSCN.

With the predicted results, we can rotate the sample digits according to their predicted angles of
rotation, aiming to correct the digits into a regular position. In Figure 7, we randomly selected 16
test samples and display their original images, the corrected digits by SCN, and the corrected ones
by DSCN, respectively. It is obvious that DSCN can contribute to a better rotation correction than
SCN, showing that the proposed DeepSCN framework have more advantages over our previously
developed SCNs [22]. So far, we have extensively compared DSCN with SCN on this specified data
modelling task. As for the paper length limitation, we have no extra space to add more robustness
analysis on these two algorithms. Additionally, more in-depth theoretical analysis (in terms of our
innovative SCN methodology) why deep is better more shallow are desirable in our future work.

5 Concluding Remarks

Although many empirical proofs demonstrate great potential of deep neural networks for learning
representation, it is still blind for end-users to deploy the network architecture so that the resulting
deep learner model has sufficient capacity to approximately represent signals in some forms. Except
for concerns on the architecture determination, one cares much about learning performance in terms
of effectiveness and efficiency. In this paper, our proposed DeepSCNs, as a class of randomized deep
neural networks, offer a fast and feasible pathway for problem solving. Our technical contributions to
the working field can be summarized as follows:

• The proposed supervisory mechanism (6) is the key for developing DeepSCN framework,
which could be used as a unique feature to distinguish our work from other randomized
learner models;

• The scopes of random parameters at each layer of DeepSCNs could be updated adaptively,
which make the set of basis functions rich and functional;
• The construction of DeepSCNs is data dependant, and the proposed algorithm has much

less human intervention provided that a set of appropriate learning parameters is given;
• The removal of the redundant nodes becomes possible with some post-processing steps,

which implies that we can make a better learning representation with sparsity.

There exist a lot of opportunities to further develop the proposed framework in either theoretical
aspects or real-world applications. For instance, one can explore some algebraic properties of the
DeepSCN to evaluate the quality of the resulting model, seek for different forms of supervisory
mechanisms, develop some advanced learning schemes for random representation, study convolutional
or recurrent versions of the proposed DeepSCN. For applications, the DeepSCN model has great
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potential for extracting random features with lower computational cost and fast implementation,
which is very important for big data classification with hierarchical or cascade structure.

Before ending up this paper, we would like to share our philosophy behind developing randomized
methods for DNNs. The territory of the weights and biases of the randomized learner models must be
data-dependant and it can be characterised by certain constraints in relation to the model’s capacity.
From our understandings on the randomized learner’s quality, it is highly desired to make the joint
hidden output matrix full-rank. Unfortunately, such an essential algebraic condition may not be
achieved by simply assigning the random hidden parameters from a fixed scope such as [-1,1] or a
pre-defined probability distribution. Therefore, the way to generate the random parameters at the
hidden layers with guarantee for both universal approximation property and sound generalization
capability should be done.
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